Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenval Structured version   Visualization version   GIF version

Theorem salgenval 41063
Description: The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Assertion
Ref Expression
salgenval (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
Distinct variable group:   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem salgenval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-salgen 41055 . . 3 SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)})
21a1i 11 . 2 (𝑋𝑉 → SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)}))
3 unieq 4597 . . . . . . 7 (𝑥 = 𝑋 𝑥 = 𝑋)
43eqeq2d 2771 . . . . . 6 (𝑥 = 𝑋 → ( 𝑠 = 𝑥 𝑠 = 𝑋))
5 sseq1 3768 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑠𝑋𝑠))
64, 5anbi12d 749 . . . . 5 (𝑥 = 𝑋 → (( 𝑠 = 𝑥𝑥𝑠) ↔ ( 𝑠 = 𝑋𝑋𝑠)))
76rabbidv 3330 . . . 4 (𝑥 = 𝑋 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
87inteqd 4633 . . 3 (𝑥 = 𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
98adantl 473 . 2 ((𝑋𝑉𝑥 = 𝑋) → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
10 elex 3353 . 2 (𝑋𝑉𝑋 ∈ V)
11 uniexg 7122 . . . . . . 7 (𝑋𝑉 𝑋 ∈ V)
12 pwsal 41057 . . . . . . 7 ( 𝑋 ∈ V → 𝒫 𝑋 ∈ SAlg)
1311, 12syl 17 . . . . . 6 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
14 unipw 5068 . . . . . . 7 𝒫 𝑋 = 𝑋
1514a1i 11 . . . . . 6 (𝑋𝑉 𝒫 𝑋 = 𝑋)
16 pwuni 4627 . . . . . . 7 𝑋 ⊆ 𝒫 𝑋
1716a1i 11 . . . . . 6 (𝑋𝑉𝑋 ⊆ 𝒫 𝑋)
1813, 15, 17jca32 559 . . . . 5 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
19 unieq 4597 . . . . . . . 8 (𝑠 = 𝒫 𝑋 𝑠 = 𝒫 𝑋)
2019eqeq1d 2763 . . . . . . 7 (𝑠 = 𝒫 𝑋 → ( 𝑠 = 𝑋 𝒫 𝑋 = 𝑋))
21 sseq2 3769 . . . . . . 7 (𝑠 = 𝒫 𝑋 → (𝑋𝑠𝑋 ⊆ 𝒫 𝑋))
2220, 21anbi12d 749 . . . . . 6 (𝑠 = 𝒫 𝑋 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
2322elrab 3505 . . . . 5 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
2418, 23sylibr 224 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
25 ne0i 4065 . . . 4 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
2624, 25syl 17 . . 3 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
27 intex 4970 . . 3 ({𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅ ↔ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ∈ V)
2826, 27sylib 208 . 2 (𝑋𝑉 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ∈ V)
292, 9, 10, 28fvmptd 6452 1 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wne 2933  {crab 3055  Vcvv 3341  wss 3716  c0 4059  𝒫 cpw 4303   cuni 4589   cint 4628  cmpt 4882  cfv 6050  SAlgcsalg 41050  SalGencsalgen 41054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-int 4629  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-iota 6013  df-fun 6052  df-fv 6058  df-salg 41051  df-salgen 41055
This theorem is referenced by:  salgencl  41072  sssalgen  41075  salgenss  41076  salgenuni  41077  issalgend  41078
  Copyright terms: Public domain W3C validator