Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgensscntex Structured version   Visualization version   GIF version

Theorem salgensscntex 40880
Description: This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgensscntex.a 𝐴 = (0[,]2)
salgensscntex.s 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salgensscntex.x 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
salgensscntex.g 𝐺 = (SalGen‘𝑋)
Assertion
Ref Expression
salgensscntex (𝑋𝑆𝑆 ∈ SAlg ∧ ¬ 𝐺𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem salgensscntex
StepHypRef Expression
1 salgensscntex.x . . 3 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
2 0re 10078 . . . . . . . . . . . 12 0 ∈ ℝ
3 2re 11128 . . . . . . . . . . . 12 2 ∈ ℝ
42, 3pm3.2i 470 . . . . . . . . . . 11 (0 ∈ ℝ ∧ 2 ∈ ℝ)
52leidi 10600 . . . . . . . . . . . 12 0 ≤ 0
6 1le2 11279 . . . . . . . . . . . 12 1 ≤ 2
75, 6pm3.2i 470 . . . . . . . . . . 11 (0 ≤ 0 ∧ 1 ≤ 2)
8 iccss 12279 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2))
94, 7, 8mp2an 708 . . . . . . . . . 10 (0[,]1) ⊆ (0[,]2)
10 id 22 . . . . . . . . . 10 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1))
119, 10sseldi 3634 . . . . . . . . 9 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2))
12 salgensscntex.a . . . . . . . . 9 𝐴 = (0[,]2)
1311, 12syl6eleqr 2741 . . . . . . . 8 (𝑦 ∈ (0[,]1) → 𝑦𝐴)
14 snelpwi 4942 . . . . . . . 8 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
1513, 14syl 17 . . . . . . 7 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴)
16 snfi 8079 . . . . . . . . . 10 {𝑦} ∈ Fin
17 fict 8588 . . . . . . . . . 10 ({𝑦} ∈ Fin → {𝑦} ≼ ω)
1816, 17ax-mp 5 . . . . . . . . 9 {𝑦} ≼ ω
19 orc 399 . . . . . . . . 9 ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2018, 19ax-mp 5 . . . . . . . 8 ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)
2120a1i 11 . . . . . . 7 (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2215, 21jca 553 . . . . . 6 (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
23 breq1 4688 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω))
24 difeq2 3755 . . . . . . . . 9 (𝑥 = {𝑦} → (𝐴𝑥) = (𝐴 ∖ {𝑦}))
2524breq1d 4695 . . . . . . . 8 (𝑥 = {𝑦} → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω))
2623, 25orbi12d 746 . . . . . . 7 (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
27 salgensscntex.s . . . . . . 7 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
2826, 27elrab2 3399 . . . . . 6 ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
2922, 28sylibr 224 . . . . 5 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆)
3029rgen 2951 . . . 4 𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆
31 eqid 2651 . . . . 5 (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦})
3231rnmptss 6432 . . . 4 (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆)
3330, 32ax-mp 5 . . 3 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆
341, 33eqsstri 3668 . 2 𝑋𝑆
35 ovex 6718 . . . . . 6 (0[,]2) ∈ V
3612, 35eqeltri 2726 . . . . 5 𝐴 ∈ V
3736a1i 11 . . . 4 (⊤ → 𝐴 ∈ V)
3837, 27salexct 40870 . . 3 (⊤ → 𝑆 ∈ SAlg)
3938trud 1533 . 2 𝑆 ∈ SAlg
40 ovex 6718 . . . . . . . . 9 (0[,]1) ∈ V
4140mptex 6527 . . . . . . . 8 (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V
4241rnex 7142 . . . . . . 7 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V
431, 42eqeltri 2726 . . . . . 6 𝑋 ∈ V
4443a1i 11 . . . . 5 (⊤ → 𝑋 ∈ V)
45 salgensscntex.g . . . . 5 𝐺 = (SalGen‘𝑋)
461unieqi 4477 . . . . . 6 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
47 snex 4938 . . . . . . . . 9 {𝑦} ∈ V
4847rgenw 2953 . . . . . . . 8 𝑦 ∈ (0[,]1){𝑦} ∈ V
49 dfiun3g 5410 . . . . . . . 8 (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}))
5048, 49ax-mp 5 . . . . . . 7 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
5150eqcomi 2660 . . . . . 6 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = 𝑦 ∈ (0[,]1){𝑦}
52 iunid 4607 . . . . . 6 𝑦 ∈ (0[,]1){𝑦} = (0[,]1)
5346, 51, 523eqtrri 2678 . . . . 5 (0[,]1) = 𝑋
5444, 45, 53unisalgen 40876 . . . 4 (⊤ → (0[,]1) ∈ 𝐺)
5554trud 1533 . . 3 (0[,]1) ∈ 𝐺
56 eqid 2651 . . . 4 (0[,]1) = (0[,]1)
5712, 27, 56salexct2 40875 . . 3 ¬ (0[,]1) ∈ 𝑆
58 nelss 3697 . . 3 (((0[,]1) ∈ 𝐺 ∧ ¬ (0[,]1) ∈ 𝑆) → ¬ 𝐺𝑆)
5955, 57, 58mp2an 708 . 2 ¬ 𝐺𝑆
6034, 39, 593pm3.2i 1259 1 (𝑋𝑆𝑆 ∈ SAlg ∧ ¬ 𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 382  wa 383  w3a 1054   = wceq 1523  wtru 1524  wcel 2030  wral 2941  {crab 2945  Vcvv 3231  cdif 3604  wss 3607  𝒫 cpw 4191  {csn 4210   cuni 4468   ciun 4552   class class class wbr 4685  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  ωcom 7107  cdom 7995  Fincfn 7997  cr 9973  0cc0 9974  1c1 9975  cle 10113  2c2 11108  [,]cicc 12216  SAlgcsalg 40846  SalGencsalgen 40850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-ntr 20872  df-salg 40847  df-salgen 40851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator