![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saldifcl | Structured version Visualization version GIF version |
Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saldifcl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq2 3755 | . . 3 ⊢ (𝑦 = 𝐸 → (∪ 𝑆 ∖ 𝑦) = (∪ 𝑆 ∖ 𝐸)) | |
2 | 1 | eleq1d 2715 | . 2 ⊢ (𝑦 = 𝐸 → ((∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝐸) ∈ 𝑆)) |
3 | issal 40852 | . . . . 5 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
4 | 3 | ibi 256 | . . . 4 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
5 | 4 | simp2d 1094 | . . 3 ⊢ (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
7 | simpr 476 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → 𝐸 ∈ 𝑆) | |
8 | 2, 6, 7 | rspcdva 3347 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∖ cdif 3604 ∅c0 3948 𝒫 cpw 4191 ∪ cuni 4468 class class class wbr 4685 ωcom 7107 ≼ cdom 7995 SAlgcsalg 40846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 df-pw 4193 df-uni 4469 df-salg 40847 |
This theorem is referenced by: salincl 40861 saluni 40862 saliincl 40863 saldifcl2 40864 intsal 40866 saldifcld 40883 |
Copyright terms: Public domain | W3C validator |