MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  saddisjlem Structured version   Visualization version   GIF version

Theorem saddisjlem 15129
Description: Lemma for sadadd 15132. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
saddisj.1 (𝜑𝐴 ⊆ ℕ0)
saddisj.2 (𝜑𝐵 ⊆ ℕ0)
saddisj.3 (𝜑 → (𝐴𝐵) = ∅)
saddisjlem.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
saddisjlem.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
saddisjlem (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem saddisjlem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 saddisj.1 . . 3 (𝜑𝐴 ⊆ ℕ0)
2 saddisj.2 . . 3 (𝜑𝐵 ⊆ ℕ0)
3 saddisjlem.c . . 3 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
4 saddisjlem.3 . . 3 (𝜑𝑁 ∈ ℕ0)
51, 2, 3, 4sadval 15121 . 2 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
6 fveq2 6158 . . . . . . . 8 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
76eleq2d 2684 . . . . . . 7 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
87notbid 308 . . . . . 6 (𝑥 = 0 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶‘0)))
98imbi2d 330 . . . . 5 (𝑥 = 0 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶‘0))))
10 fveq2 6158 . . . . . . . 8 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
1110eleq2d 2684 . . . . . . 7 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
1211notbid 308 . . . . . 6 (𝑥 = 𝑘 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶𝑘)))
1312imbi2d 330 . . . . 5 (𝑥 = 𝑘 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶𝑘))))
14 fveq2 6158 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
1514eleq2d 2684 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
1615notbid 308 . . . . . 6 (𝑥 = (𝑘 + 1) → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶‘(𝑘 + 1))))
1716imbi2d 330 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
18 fveq2 6158 . . . . . . . 8 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
1918eleq2d 2684 . . . . . . 7 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
2019notbid 308 . . . . . 6 (𝑥 = 𝑁 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶𝑁)))
2120imbi2d 330 . . . . 5 (𝑥 = 𝑁 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶𝑁))))
221, 2, 3sadc0 15119 . . . . 5 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
23 noel 3901 . . . . . . . . 9 ¬ 𝑘 ∈ ∅
241ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝐴 ⊆ ℕ0)
252ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝐵 ⊆ ℕ0)
26 simplr 791 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝑘 ∈ ℕ0)
2724, 25, 3, 26sadcp1 15120 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))))
28 cad0 1553 . . . . . . . . . . 11 (¬ ∅ ∈ (𝐶𝑘) → (cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘)) ↔ (𝑘𝐴𝑘𝐵)))
2928adantl 482 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘)) ↔ (𝑘𝐴𝑘𝐵)))
30 elin 3780 . . . . . . . . . . 11 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
31 saddisj.3 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
3231ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (𝐴𝐵) = ∅)
3332eleq2d 2684 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
3430, 33syl5bbr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → ((𝑘𝐴𝑘𝐵) ↔ 𝑘 ∈ ∅))
3527, 29, 343bitrd 294 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ 𝑘 ∈ ∅))
3623, 35mtbiri 317 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))
3736ex 450 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (¬ ∅ ∈ (𝐶𝑘) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1))))
3837expcom 451 . . . . . 6 (𝑘 ∈ ℕ0 → (𝜑 → (¬ ∅ ∈ (𝐶𝑘) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
3938a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑘)) → (𝜑 → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
409, 13, 17, 21, 22, 39nn0ind 11432 . . . 4 (𝑁 ∈ ℕ0 → (𝜑 → ¬ ∅ ∈ (𝐶𝑁)))
414, 40mpcom 38 . . 3 (𝜑 → ¬ ∅ ∈ (𝐶𝑁))
42 hadrot 1537 . . . 4 (hadd(∅ ∈ (𝐶𝑁), 𝑁𝐴, 𝑁𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
43 had0 1540 . . . 4 (¬ ∅ ∈ (𝐶𝑁) → (hadd(∅ ∈ (𝐶𝑁), 𝑁𝐴, 𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
4442, 43syl5bbr 274 . . 3 (¬ ∅ ∈ (𝐶𝑁) → (hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
4541, 44syl 17 . 2 (𝜑 → (hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
46 noel 3901 . . . . 5 ¬ 𝑁 ∈ ∅
47 elin 3780 . . . . . 6 (𝑁 ∈ (𝐴𝐵) ↔ (𝑁𝐴𝑁𝐵))
4831eleq2d 2684 . . . . . 6 (𝜑 → (𝑁 ∈ (𝐴𝐵) ↔ 𝑁 ∈ ∅))
4947, 48syl5bbr 274 . . . . 5 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ 𝑁 ∈ ∅))
5046, 49mtbiri 317 . . . 4 (𝜑 → ¬ (𝑁𝐴𝑁𝐵))
51 xor2 1467 . . . . 5 ((𝑁𝐴𝑁𝐵) ↔ ((𝑁𝐴𝑁𝐵) ∧ ¬ (𝑁𝐴𝑁𝐵)))
5251rbaib 946 . . . 4 (¬ (𝑁𝐴𝑁𝐵) → ((𝑁𝐴𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
5350, 52syl 17 . . 3 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
54 elun 3737 . . 3 (𝑁 ∈ (𝐴𝐵) ↔ (𝑁𝐴𝑁𝐵))
5553, 54syl6bbr 278 . 2 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
565, 45, 553bitrd 294 1 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wxo 1461   = wceq 1480  haddwhad 1529  caddwcad 1542  wcel 1987  cun 3558  cin 3559  wss 3560  c0 3897  ifcif 4064  cmpt 4683  cfv 5857  (class class class)co 6615  cmpt2 6617  1𝑜c1o 7513  2𝑜c2o 7514  0cc0 9896  1c1 9897   + caddc 9899  cmin 10226  0cn0 11252  seqcseq 12757   sadd csad 15085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1462  df-tru 1483  df-had 1530  df-cad 1543  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-seq 12758  df-sad 15116
This theorem is referenced by:  saddisj  15130
  Copyright terms: Public domain W3C validator