![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sadcf | Structured version Visualization version GIF version |
Description: The carry sequence is a sequence of elements of 2𝑜 encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
sadval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
sadval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
sadval.c | ⊢ 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
Ref | Expression |
---|---|
sadcf | ⊢ (𝜑 → 𝐶:ℕ0⟶2𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 11345 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
2 | iftrue 4125 | . . . . . . 7 ⊢ (𝑛 = 0 → if(𝑛 = 0, ∅, (𝑛 − 1)) = ∅) | |
3 | eqid 2651 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) | |
4 | 0ex 4823 | . . . . . . 7 ⊢ ∅ ∈ V | |
5 | 2, 3, 4 | fvmpt 6321 | . . . . . 6 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅) |
6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅ |
7 | 4 | prid1 4329 | . . . . . 6 ⊢ ∅ ∈ {∅, 1𝑜} |
8 | df2o3 7618 | . . . . . 6 ⊢ 2𝑜 = {∅, 1𝑜} | |
9 | 7, 8 | eleqtrri 2729 | . . . . 5 ⊢ ∅ ∈ 2𝑜 |
10 | 6, 9 | eqeltri 2726 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2𝑜 |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2𝑜) |
12 | df-ov 6693 | . . . . 5 ⊢ (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) = ((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))‘〈𝑥, 𝑦〉) | |
13 | 1on 7612 | . . . . . . . . . . . 12 ⊢ 1𝑜 ∈ On | |
14 | 13 | elexi 3244 | . . . . . . . . . . 11 ⊢ 1𝑜 ∈ V |
15 | 14 | prid2 4330 | . . . . . . . . . 10 ⊢ 1𝑜 ∈ {∅, 1𝑜} |
16 | 15, 8 | eleqtrri 2729 | . . . . . . . . 9 ⊢ 1𝑜 ∈ 2𝑜 |
17 | 16, 9 | keepel 4188 | . . . . . . . 8 ⊢ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜 |
18 | 17 | rgen2w 2954 | . . . . . . 7 ⊢ ∀𝑐 ∈ 2𝑜 ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜 |
19 | eqid 2651 | . . . . . . . 8 ⊢ (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)) = (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)) | |
20 | 19 | fmpt2 7282 | . . . . . . 7 ⊢ (∀𝑐 ∈ 2𝑜 ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜 ↔ (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)):(2𝑜 × ℕ0)⟶2𝑜) |
21 | 18, 20 | mpbi 220 | . . . . . 6 ⊢ (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)):(2𝑜 × ℕ0)⟶2𝑜 |
22 | 21, 9 | f0cli 6410 | . . . . 5 ⊢ ((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))‘〈𝑥, 𝑦〉) ∈ 2𝑜 |
23 | 12, 22 | eqeltri 2726 | . . . 4 ⊢ (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) ∈ 2𝑜 |
24 | 23 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 2𝑜 ∧ 𝑦 ∈ V)) → (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) ∈ 2𝑜) |
25 | nn0uz 11760 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
26 | 0zd 11427 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
27 | fvexd 6241 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(0 + 1))) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V) | |
28 | 11, 24, 25, 26, 27 | seqf2 12860 | . 2 ⊢ (𝜑 → seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2𝑜) |
29 | sadval.c | . . 3 ⊢ 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
30 | 29 | feq1i 6074 | . 2 ⊢ (𝐶:ℕ0⟶2𝑜 ↔ seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2𝑜) |
31 | 28, 30 | sylibr 224 | 1 ⊢ (𝜑 → 𝐶:ℕ0⟶2𝑜) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 caddwcad 1585 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ⊆ wss 3607 ∅c0 3948 ifcif 4119 {cpr 4212 〈cop 4216 ↦ cmpt 4762 × cxp 5141 Oncon0 5761 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 1𝑜c1o 7598 2𝑜c2o 7599 0cc0 9974 1c1 9975 + caddc 9977 − cmin 10304 ℕ0cn0 11330 ℤ≥cuz 11725 seqcseq 12841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-seq 12842 |
This theorem is referenced by: sadcp1 15224 |
Copyright terms: Public domain | W3C validator |