Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcaddlem Structured version   Visualization version   GIF version

Hypotheses
Ref Expression
sadval.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcaddlem.1 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Assertion
Ref Expression
sadcaddlem (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ (2↑(𝑁 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

StepHypRef Expression
1 cad1 1595 . . . . 5 (∅ ∈ (𝐶𝑁) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
21adantl 481 . . . 4 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
3 2nn 11223 . . . . . . . . . . 11 2 ∈ ℕ
43a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℕ)
5 sadcp1.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
64, 5nnexpcld 13070 . . . . . . . . 9 (𝜑 → (2↑𝑁) ∈ ℕ)
76nnred 11073 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℝ)
87ad2antrr 762 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (2↑𝑁) ∈ ℝ)
9 inss1 3866 . . . . . . . . . . . . 13 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
10 sadval.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℕ0)
119, 10syl5ss 3647 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
12 fzofi 12813 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ Fin
1312a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0..^𝑁) ∈ Fin)
14 inss2 3867 . . . . . . . . . . . . 13 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
15 ssfi 8221 . . . . . . . . . . . . 13 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
1613, 14, 15sylancl 695 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
17 elfpw 8309 . . . . . . . . . . . 12 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
1811, 16, 17sylanbrc 699 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
19 bitsf1o 15214 . . . . . . . . . . . . . . 15 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
20 f1ocnv 6187 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
2119, 20ax-mp 5 . . . . . . . . . . . . . 14 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
22 sadcadd.k . . . . . . . . . . . . . . 15 𝐾 = (bits ↾ ℕ0)
23 f1oeq1 6165 . . . . . . . . . . . . . . 15 (𝐾 = (bits ↾ ℕ0) → (𝐾:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0))
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (𝐾:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
2521, 24mpbir 221 . . . . . . . . . . . . 13 𝐾:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
26 f1of 6175 . . . . . . . . . . . . 13 (𝐾:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
2725, 26ax-mp 5 . . . . . . . . . . . 12 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
2827ffvelrni 6398 . . . . . . . . . . 11 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
2918, 28syl 17 . . . . . . . . . 10 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
30 inss1 3866 . . . . . . . . . . . . 13 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
31 sadval.b . . . . . . . . . . . . 13 (𝜑𝐵 ⊆ ℕ0)
3230, 31syl5ss 3647 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
33 inss2 3867 . . . . . . . . . . . . 13 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
34 ssfi 8221 . . . . . . . . . . . . 13 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
3513, 33, 34sylancl 695 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
36 elfpw 8309 . . . . . . . . . . . 12 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
3732, 35, 36sylanbrc 699 . . . . . . . . . . 11 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
3827ffvelrni 6398 . . . . . . . . . . 11 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
3937, 38syl 17 . . . . . . . . . 10 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
4029, 39nn0addcld 11393 . . . . . . . . 9 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℕ0)
4140nn0red 11390 . . . . . . . 8 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
4241ad2antrr 762 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
43 2nn0 11347 . . . . . . . . . . . . 13 2 ∈ ℕ0
4443a1i 11 . . . . . . . . . . . 12 ((𝜑𝑁𝐴) → 2 ∈ ℕ0)
455adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁𝐴) → 𝑁 ∈ ℕ0)
4644, 45nn0expcld 13071 . . . . . . . . . . 11 ((𝜑𝑁𝐴) → (2↑𝑁) ∈ ℕ0)
47 0nn0 11345 . . . . . . . . . . . 12 0 ∈ ℕ0
4847a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑁𝐴) → 0 ∈ ℕ0)
4946, 48ifclda 4153 . . . . . . . . . 10 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
5043a1i 11 . . . . . . . . . . . 12 ((𝜑𝑁𝐵) → 2 ∈ ℕ0)
515adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁𝐵) → 𝑁 ∈ ℕ0)
5250, 51nn0expcld 13071 . . . . . . . . . . 11 ((𝜑𝑁𝐵) → (2↑𝑁) ∈ ℕ0)
5347a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑁𝐵) → 0 ∈ ℕ0)
5452, 53ifclda 4153 . . . . . . . . . 10 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
5549, 54nn0addcld 11393 . . . . . . . . 9 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℕ0)
5655nn0red 11390 . . . . . . . 8 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℝ)
5756ad2antrr 762 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℝ)
58 sadcaddlem.1 . . . . . . . . 9 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
5958biimpa 500 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
6059adantr 480 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
616nnnn0d 11389 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑁) ∈ ℕ0)
62 ifcl 4163 . . . . . . . . . . . . 13 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6361, 47, 62sylancl 695 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6463nn0ge0d 11392 . . . . . . . . . . 11 (𝜑 → 0 ≤ if(𝑁𝐵, (2↑𝑁), 0))
657adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑁𝐵) → (2↑𝑁) ∈ ℝ)
66 0red 10079 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑁𝐵) → 0 ∈ ℝ)
6765, 66ifclda 4153 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℝ)
687, 67addge01d 10653 . . . . . . . . . . 11 (𝜑 → (0 ≤ if(𝑁𝐵, (2↑𝑁), 0) ↔ (2↑𝑁) ≤ ((2↑𝑁) + if(𝑁𝐵, (2↑𝑁), 0))))
6964, 68mpbid 222 . . . . . . . . . 10 (𝜑 → (2↑𝑁) ≤ ((2↑𝑁) + if(𝑁𝐵, (2↑𝑁), 0)))
7069ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐴) → (2↑𝑁) ≤ ((2↑𝑁) + if(𝑁𝐵, (2↑𝑁), 0)))
71 iftrue 4125 . . . . . . . . . . 11 (𝑁𝐴 → if(𝑁𝐴, (2↑𝑁), 0) = (2↑𝑁))
7271adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐴) → if(𝑁𝐴, (2↑𝑁), 0) = (2↑𝑁))
7372oveq1d 6705 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐴) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = ((2↑𝑁) + if(𝑁𝐵, (2↑𝑁), 0)))
7470, 73breqtrrd 4713 . . . . . . . 8 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐴) → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))
75 ifcl 4163 . . . . . . . . . . . . 13 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
7661, 47, 75sylancl 695 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
7776nn0ge0d 11392 . . . . . . . . . . 11 (𝜑 → 0 ≤ if(𝑁𝐴, (2↑𝑁), 0))
787adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑁𝐴) → (2↑𝑁) ∈ ℝ)
79 0red 10079 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑁𝐴) → 0 ∈ ℝ)
8078, 79ifclda 4153 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℝ)
817, 80addge02d 10654 . . . . . . . . . . 11 (𝜑 → (0 ≤ if(𝑁𝐴, (2↑𝑁), 0) ↔ (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + (2↑𝑁))))
8277, 81mpbid 222 . . . . . . . . . 10 (𝜑 → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + (2↑𝑁)))
8382ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐵) → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + (2↑𝑁)))
84 iftrue 4125 . . . . . . . . . . 11 (𝑁𝐵 → if(𝑁𝐵, (2↑𝑁), 0) = (2↑𝑁))
8584adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐵) → if(𝑁𝐵, (2↑𝑁), 0) = (2↑𝑁))
8685oveq2d 6706 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐵) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = (if(𝑁𝐴, (2↑𝑁), 0) + (2↑𝑁)))
8783, 86breqtrrd 4713 . . . . . . . 8 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐵) → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))
8874, 87jaodan 843 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))
898, 8, 42, 57, 60, 88le2addd 10684 . . . . . 6 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9089ex 449 . . . . 5 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → ((𝑁𝐴𝑁𝐵) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
91 ioran 510 . . . . . 6 (¬ (𝑁𝐴𝑁𝐵) ↔ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵))
92 iffalse 4128 . . . . . . . . . . . . . 14 𝑁𝐴 → if(𝑁𝐴, (2↑𝑁), 0) = 0)
9392ad2antrl 764 . . . . . . . . . . . . 13 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → if(𝑁𝐴, (2↑𝑁), 0) = 0)
94 iffalse 4128 . . . . . . . . . . . . . 14 𝑁𝐵 → if(𝑁𝐵, (2↑𝑁), 0) = 0)
9594ad2antll 765 . . . . . . . . . . . . 13 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → if(𝑁𝐵, (2↑𝑁), 0) = 0)
9693, 95oveq12d 6708 . . . . . . . . . . . 12 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = (0 + 0))
97 00id 10249 . . . . . . . . . . . 12 (0 + 0) = 0
9896, 97syl6eq 2701 . . . . . . . . . . 11 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = 0)
9998oveq2d 6706 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + 0))
10029nn0red 11390 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
101100ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
10239nn0red 11390 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
103102ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
104101, 103readdcld 10107 . . . . . . . . . . . 12 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
105104recnd 10106 . . . . . . . . . . 11 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℂ)
106105addid1d 10274 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + 0) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
10799, 106eqtrd 2685 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
10822fveq1i 6230 . . . . . . . . . . . . . . . 16 (𝐾‘(𝐴 ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))
109108fveq2i 6232 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0)‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))))
110 fvres 6245 . . . . . . . . . . . . . . . 16 ((𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) = (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))))
11129, 110syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((bits ↾ ℕ0)‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) = (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))))
112 f1ocnvfv2 6573 . . . . . . . . . . . . . . . 16 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))) = (𝐴 ∩ (0..^𝑁)))
11319, 18, 112sylancr 696 . . . . . . . . . . . . . . 15 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))) = (𝐴 ∩ (0..^𝑁)))
114109, 111, 1133eqtr3a 2709 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) = (𝐴 ∩ (0..^𝑁)))
115114, 14syl6eqss 3688 . . . . . . . . . . . . 13 (𝜑 → (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
11629nn0zd 11518 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℤ)
117 bitsfzo 15204 . . . . . . . . . . . . . 14 (((𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
118116, 5, 117syl2anc 694 . . . . . . . . . . . . 13 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
119115, 118mpbird 247 . . . . . . . . . . . 12 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
120 elfzolt2 12518 . . . . . . . . . . . 12 ((𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (𝐾‘(𝐴 ∩ (0..^𝑁))) < (2↑𝑁))
121119, 120syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) < (2↑𝑁))
12222fveq1i 6230 . . . . . . . . . . . . . . . 16 (𝐾‘(𝐵 ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))
123122fveq2i 6232 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0)‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))))
124 fvres 6245 . . . . . . . . . . . . . . . 16 ((𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) = (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))))
12539, 124syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((bits ↾ ℕ0)‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) = (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))))
126 f1ocnvfv2 6573 . . . . . . . . . . . . . . . 16 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) = (𝐵 ∩ (0..^𝑁)))
12719, 37, 126sylancr 696 . . . . . . . . . . . . . . 15 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) = (𝐵 ∩ (0..^𝑁)))
128123, 125, 1273eqtr3a 2709 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) = (𝐵 ∩ (0..^𝑁)))
129128, 33syl6eqss 3688 . . . . . . . . . . . . 13 (𝜑 → (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
13039nn0zd 11518 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℤ)
131 bitsfzo 15204 . . . . . . . . . . . . . 14 (((𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
132130, 5, 131syl2anc 694 . . . . . . . . . . . . 13 (𝜑 → ((𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
133129, 132mpbird 247 . . . . . . . . . . . 12 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
134 elfzolt2 12518 . . . . . . . . . . . 12 ((𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (𝐾‘(𝐵 ∩ (0..^𝑁))) < (2↑𝑁))
135133, 134syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) < (2↑𝑁))
136100, 102, 7, 7, 121, 135lt2addd 10688 . . . . . . . . . 10 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < ((2↑𝑁) + (2↑𝑁)))
137136ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < ((2↑𝑁) + (2↑𝑁)))
138107, 137eqbrtrd 4707 . . . . . . . 8 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) < ((2↑𝑁) + (2↑𝑁)))
13980ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℝ)
14067ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℝ)
141139, 140readdcld 10107 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℝ)
142104, 141readdcld 10107 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℝ)
1437ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (2↑𝑁) ∈ ℝ)
144143, 143readdcld 10107 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((2↑𝑁) + (2↑𝑁)) ∈ ℝ)
145142, 144ltnled 10222 . . . . . . . 8 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) < ((2↑𝑁) + (2↑𝑁)) ↔ ¬ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
146138, 145mpbid 222 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ¬ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
147146ex 449 . . . . . 6 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → ((¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵) → ¬ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
14891, 147syl5bi 232 . . . . 5 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (¬ (𝑁𝐴𝑁𝐵) → ¬ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
14990, 148impcon4bid 217 . . . 4 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → ((𝑁𝐴𝑁𝐵) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
1502, 149bitrd 268 . . 3 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
151 cad0 1596 . . . . 5 (¬ ∅ ∈ (𝐶𝑁) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
152151adantl 481 . . . 4 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
15340nn0ge0d 11392 . . . . . . . . 9 (𝜑 → 0 ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
1547, 7readdcld 10107 . . . . . . . . . 10 (𝜑 → ((2↑𝑁) + (2↑𝑁)) ∈ ℝ)
155154, 41addge02d 10654 . . . . . . . . 9 (𝜑 → (0 ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((2↑𝑁) + (2↑𝑁)))))
156153, 155mpbid 222 . . . . . . . 8 (𝜑 → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((2↑𝑁) + (2↑𝑁))))
157156ad2antrr 762 . . . . . . 7 (((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((2↑𝑁) + (2↑𝑁))))
15871, 84oveqan12d 6709 . . . . . . . . 9 ((𝑁𝐴𝑁𝐵) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = ((2↑𝑁) + (2↑𝑁)))
159158adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = ((2↑𝑁) + (2↑𝑁)))
160159oveq2d 6706 . . . . . . 7 (((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((2↑𝑁) + (2↑𝑁))))
161157, 160breqtrrd 4713 . . . . . 6 (((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
162161ex 449 . . . . 5 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝑁𝐴𝑁𝐵) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
163100adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
164102adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
165163, 164readdcld 10107 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
1667adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ∈ ℝ)
1677, 41lenltd 10221 . . . . . . . . . . . 12 (𝜑 → ((2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ↔ ¬ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < (2↑𝑁)))
16858, 167bitrd 268 . . . . . . . . . . 11 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ ¬ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < (2↑𝑁)))
169168con2bid 343 . . . . . . . . . 10 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < (2↑𝑁) ↔ ¬ ∅ ∈ (𝐶𝑁)))
170169biimpar 501 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < (2↑𝑁))
171165, 166, 166, 170ltadd1dd 10676 . . . . . . . 8 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < ((2↑𝑁) + (2↑𝑁)))
172165, 166readdcld 10107 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) ∈ ℝ)
173154adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((2↑𝑁) + (2↑𝑁)) ∈ ℝ)
17441, 56readdcld 10107 . . . . . . . . . 10 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℝ)
175174adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℝ)
176 ltletr 10167 . . . . . . . . 9 (((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) ∈ ℝ ∧ ((2↑𝑁) + (2↑𝑁)) ∈ ℝ ∧ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℝ) → (((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < ((2↑𝑁) + (2↑𝑁)) ∧ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
177172, 173, 175, 176syl3anc 1366 . . . . . . . 8 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < ((2↑𝑁) + (2↑𝑁)) ∧ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
178171, 177mpand 711 . . . . . . 7 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
17956adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℝ)
18041adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
181166, 179, 180ltadd2d 10231 . . . . . . 7 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ↔ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
182178, 181sylibrd 249 . . . . . 6 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) → (2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
1837, 56ltnled 10222 . . . . . . . 8 (𝜑 → ((2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ↔ ¬ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁)))
18463nn0cnd 11391 . . . . . . . . . . . . 13 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℂ)
185184addid2d 10275 . . . . . . . . . . . 12 (𝜑 → (0 + if(𝑁𝐵, (2↑𝑁), 0)) = if(𝑁𝐵, (2↑𝑁), 0))
1867leidd 10632 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑁) ≤ (2↑𝑁))
18761nn0ge0d 11392 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (2↑𝑁))
188 breq1 4688 . . . . . . . . . . . . . 14 ((2↑𝑁) = if(𝑁𝐵, (2↑𝑁), 0) → ((2↑𝑁) ≤ (2↑𝑁) ↔ if(𝑁𝐵, (2↑𝑁), 0) ≤ (2↑𝑁)))
189 breq1 4688 . . . . . . . . . . . . . 14 (0 = if(𝑁𝐵, (2↑𝑁), 0) → (0 ≤ (2↑𝑁) ↔ if(𝑁𝐵, (2↑𝑁), 0) ≤ (2↑𝑁)))
190188, 189ifboth 4157 . . . . . . . . . . . . 13 (((2↑𝑁) ≤ (2↑𝑁) ∧ 0 ≤ (2↑𝑁)) → if(𝑁𝐵, (2↑𝑁), 0) ≤ (2↑𝑁))
191186, 187, 190syl2anc 694 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ≤ (2↑𝑁))
192185, 191eqbrtrd 4707 . . . . . . . . . . 11 (𝜑 → (0 + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁))
19392oveq1d 6705 . . . . . . . . . . . 12 𝑁𝐴 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = (0 + if(𝑁𝐵, (2↑𝑁), 0)))
194193breq1d 4695 . . . . . . . . . . 11 𝑁𝐴 → ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) ↔ (0 + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁)))
195192, 194syl5ibrcom 237 . . . . . . . . . 10 (𝜑 → (¬ 𝑁𝐴 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁)))
196195con1d 139 . . . . . . . . 9 (𝜑 → (¬ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) → 𝑁𝐴))
19776nn0cnd 11391 . . . . . . . . . . . . 13 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℂ)
198197addid1d 10274 . . . . . . . . . . . 12 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + 0) = if(𝑁𝐴, (2↑𝑁), 0))
199 breq1 4688 . . . . . . . . . . . . . 14 ((2↑𝑁) = if(𝑁𝐴, (2↑𝑁), 0) → ((2↑𝑁) ≤ (2↑𝑁) ↔ if(𝑁𝐴, (2↑𝑁), 0) ≤ (2↑𝑁)))
200 breq1 4688 . . . . . . . . . . . . . 14 (0 = if(𝑁𝐴, (2↑𝑁), 0) → (0 ≤ (2↑𝑁) ↔ if(𝑁𝐴, (2↑𝑁), 0) ≤ (2↑𝑁)))
201199, 200ifboth 4157 . . . . . . . . . . . . 13 (((2↑𝑁) ≤ (2↑𝑁) ∧ 0 ≤ (2↑𝑁)) → if(𝑁𝐴, (2↑𝑁), 0) ≤ (2↑𝑁))
202186, 187, 201syl2anc 694 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ≤ (2↑𝑁))
203198, 202eqbrtrd 4707 . . . . . . . . . . 11 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + 0) ≤ (2↑𝑁))
20494oveq2d 6706 . . . . . . . . . . . 12 𝑁𝐵 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = (if(𝑁𝐴, (2↑𝑁), 0) + 0))
205204breq1d 4695 . . . . . . . . . . 11 𝑁𝐵 → ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) ↔ (if(𝑁𝐴, (2↑𝑁), 0) + 0) ≤ (2↑𝑁)))
206203, 205syl5ibrcom 237 . . . . . . . . . 10 (𝜑 → (¬ 𝑁𝐵 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁)))
207206con1d 139 . . . . . . . . 9 (𝜑 → (¬ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) → 𝑁𝐵))
208196, 207jcad 554 . . . . . . . 8 (𝜑 → (¬ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) → (𝑁𝐴𝑁𝐵)))
209183, 208sylbid 230 . . . . . . 7 (𝜑 → ((2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) → (𝑁𝐴𝑁𝐵)))
210209adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) → (𝑁𝐴𝑁𝐵)))
211182, 210syld 47 . . . . 5 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) → (𝑁𝐴𝑁𝐵)))
212162, 211impbid 202 . . . 4 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝑁𝐴𝑁𝐵) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
213152, 212bitrd 268 . . 3 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
214150, 213pm2.61dan 849 . 2 (𝜑 → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
215 sadval.c . . 3 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
21610, 31, 215, 5sadcp1 15224 . 2 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
217 2cnd 11131 . . . . 5 (𝜑 → 2 ∈ ℂ)
218217, 5expp1d 13049 . . . 4 (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
2196nncnd 11074 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℂ)
220219times2d 11314 . . . 4 (𝜑 → ((2↑𝑁) · 2) = ((2↑𝑁) + (2↑𝑁)))
221218, 220eqtrd 2685 . . 3 (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) + (2↑𝑁)))
22222bitsinvp1 15218 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
22310, 5, 222syl2anc 694 . . . . 5 (𝜑 → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
22422bitsinvp1 15218 . . . . . 6 ((𝐵 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
22531, 5, 224syl2anc 694 . . . . 5 (𝜑 → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
226223, 225oveq12d 6708 . . . 4 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
22729nn0cnd 11391 . . . . 5 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
22839nn0cnd 11391 . . . . 5 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
229227, 197, 228, 184add4d 10302 . . . 4 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
230226, 229eqtrd 2685 . . 3 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
231221, 230breq12d 4698 . 2 (𝜑 → ((2↑(𝑁 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
232214, 216, 2313bitr4d 300 1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ (2↑(𝑁 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523  caddwcad 1585   ∈ wcel 2030   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ifcif 4119  𝒫 cpw 4191   class class class wbr 4685   ↦ cmpt 4762  ◡ccnv 5142   ↾ cres 5145  ⟶wf 5922  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  1𝑜c1o 7598  2𝑜c2o 7599  Fincfn 7997  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   ≤ cle 10113   − cmin 10304  ℕcn 11058  2c2 11108  ℕ0cn0 11330  ℤcz 11415  ..^cfzo 12504  seqcseq 12841  ↑cexp 12900  bitscbits 15188 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-xor 1505  df-tru 1526  df-fal 1529  df-cad 1586  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-bits 15191 This theorem is referenced by:  sadcadd  15227
 Copyright terms: Public domain W3C validator