MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadasslem Structured version   Visualization version   GIF version

Theorem sadasslem 15386
Description: Lemma for sadass 15387. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadasslem.1 (𝜑𝐴 ⊆ ℕ0)
sadasslem.2 (𝜑𝐵 ⊆ ℕ0)
sadasslem.3 (𝜑𝐶 ⊆ ℕ0)
sadasslem.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadasslem (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))

Proof of Theorem sadasslem
Dummy variables 𝑐 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3968 . . . . . . . . . . 11 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
2 sadasslem.1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
31, 2syl5ss 3747 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
4 fzofi 12959 . . . . . . . . . . . 12 (0..^𝑁) ∈ Fin
54a1i 11 . . . . . . . . . . 11 (𝜑 → (0..^𝑁) ∈ Fin)
6 inss2 3969 . . . . . . . . . . 11 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
7 ssfi 8337 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
85, 6, 7sylancl 697 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
9 elfpw 8425 . . . . . . . . . 10 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
103, 8, 9sylanbrc 701 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
11 bitsf1o 15361 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
12 f1ocnv 6302 . . . . . . . . . . 11 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
13 f1of 6290 . . . . . . . . . . 11 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
1411, 12, 13mp2b 10 . . . . . . . . . 10 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
1514ffvelrni 6513 . . . . . . . . 9 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
1610, 15syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
1716nn0cnd 11537 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
18 inss1 3968 . . . . . . . . . . 11 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
19 sadasslem.2 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
2018, 19syl5ss 3747 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
21 inss2 3969 . . . . . . . . . . 11 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
22 ssfi 8337 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
235, 21, 22sylancl 697 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
24 elfpw 8425 . . . . . . . . . 10 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
2520, 23, 24sylanbrc 701 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
2614ffvelrni 6513 . . . . . . . . 9 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
2725, 26syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
2827nn0cnd 11537 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
29 inss1 3968 . . . . . . . . . . 11 (𝐶 ∩ (0..^𝑁)) ⊆ 𝐶
30 sadasslem.3 . . . . . . . . . . 11 (𝜑𝐶 ⊆ ℕ0)
3129, 30syl5ss 3747 . . . . . . . . . 10 (𝜑 → (𝐶 ∩ (0..^𝑁)) ⊆ ℕ0)
32 inss2 3969 . . . . . . . . . . 11 (𝐶 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
33 ssfi 8337 . . . . . . . . . . 11 (((0..^𝑁) ∈ Fin ∧ (𝐶 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐶 ∩ (0..^𝑁)) ∈ Fin)
345, 32, 33sylancl 697 . . . . . . . . . 10 (𝜑 → (𝐶 ∩ (0..^𝑁)) ∈ Fin)
35 elfpw 8425 . . . . . . . . . 10 ((𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐶 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐶 ∩ (0..^𝑁)) ∈ Fin))
3631, 34, 35sylanbrc 701 . . . . . . . . 9 (𝜑 → (𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
3714ffvelrni 6513 . . . . . . . . 9 ((𝐶 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℕ0)
3836, 37syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℕ0)
3938nn0cnd 11537 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℂ)
4017, 28, 39addassd 10246 . . . . . 6 (𝜑 → ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))))
4140oveq1d 6820 . . . . 5 (𝜑 → (((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))) mod (2↑𝑁)))
42 inss1 3968 . . . . . . . . . 10 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
43 sadcl 15378 . . . . . . . . . . 11 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
442, 19, 43syl2anc 696 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
4542, 44syl5ss 3747 . . . . . . . . 9 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
46 inss2 3969 . . . . . . . . . 10 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
47 ssfi 8337 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
485, 46, 47sylancl 697 . . . . . . . . 9 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
49 elfpw 8425 . . . . . . . . 9 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
5045, 48, 49sylanbrc 701 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
5114ffvelrni 6513 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
5250, 51syl 17 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
5352nn0red 11536 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ)
5416nn0red 11536 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
5527nn0red 11536 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
5654, 55readdcld 10253 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
5738nn0red 11536 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) ∈ ℝ)
58 2rp 12022 . . . . . . . 8 2 ∈ ℝ+
5958a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ+)
60 sadasslem.4 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6160nn0zd 11664 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6259, 61rpexpcld 13218 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℝ+)
63 eqid 2752 . . . . . . 7 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
64 eqid 2752 . . . . . . 7 (bits ↾ ℕ0) = (bits ↾ ℕ0)
652, 19, 63, 60, 64sadadd3 15377 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
66 eqidd 2753 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))) mod (2↑𝑁)))
6753, 56, 57, 57, 62, 65, 66modadd12d 12912 . . . . 5 (𝜑 → ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = (((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
68 inss1 3968 . . . . . . . . . 10 ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (𝐵 sadd 𝐶)
69 sadcl 15378 . . . . . . . . . . 11 ((𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
7019, 30, 69syl2anc 696 . . . . . . . . . 10 (𝜑 → (𝐵 sadd 𝐶) ⊆ ℕ0)
7168, 70syl5ss 3747 . . . . . . . . 9 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0)
72 inss2 3969 . . . . . . . . . 10 ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
73 ssfi 8337 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
745, 72, 73sylancl 697 . . . . . . . . 9 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
75 elfpw 8425 . . . . . . . . 9 (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin))
7671, 74, 75sylanbrc 701 . . . . . . . 8 (𝜑 → ((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
7714ffvelrni 6513 . . . . . . . 8 (((𝐵 sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
7876, 77syl 17 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
7978nn0red 11536 . . . . . 6 (𝜑 → ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ)
8055, 57readdcld 10253 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) ∈ ℝ)
81 eqidd 2753 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) mod (2↑𝑁)))
82 eqid 2752 . . . . . . 7 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐵, 𝑚𝐶, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐵, 𝑚𝐶, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8319, 30, 82, 60, 64sadadd3 15377 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
8454, 54, 79, 80, 62, 81, 83modadd12d 12912 . . . . 5 (𝜑 → ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + (((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁))))) mod (2↑𝑁)))
8541, 67, 843eqtr4d 2796 . . . 4 (𝜑 → ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)))
86 eqid 2752 . . . . 5 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 sadd 𝐵), 𝑚𝐶, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 sadd 𝐵), 𝑚𝐶, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8744, 30, 86, 60, 64sadadd3 15377 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐶 ∩ (0..^𝑁)))) mod (2↑𝑁)))
88 eqid 2752 . . . . 5 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚 ∈ (𝐵 sadd 𝐶), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚 ∈ (𝐵 sadd 𝐶), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
892, 70, 88, 60, 64sadadd3 15377 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 sadd 𝐶) ∩ (0..^𝑁)))) mod (2↑𝑁)))
9085, 87, 893eqtr4d 2796 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)))
91 inss1 3968 . . . . . . . 8 (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ((𝐴 sadd 𝐵) sadd 𝐶)
92 sadcl 15378 . . . . . . . . 9 (((𝐴 sadd 𝐵) ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
9344, 30, 92syl2anc 696 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
9491, 93syl5ss 3747 . . . . . . 7 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0)
95 inss2 3969 . . . . . . . 8 (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
96 ssfi 8337 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
975, 95, 96sylancl 697 . . . . . . 7 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin)
98 elfpw 8425 . . . . . . 7 ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ Fin))
9994, 97, 98sylanbrc 701 . . . . . 6 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
10014ffvelrni 6513 . . . . . 6 ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
10199, 100syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0)
102101nn0red 11536 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ)
103101nn0ge0d 11538 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
104 fvres 6360 . . . . . . . . 9 (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))))
105101, 104syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))))
106 f1ocnvfv2 6688 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
10711, 99, 106sylancr 698 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
108105, 107eqtr3d 2788 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) = (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))
109108, 95syl6eqss 3788 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
110101nn0zd 11664 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℤ)
111 bitsfzo 15351 . . . . . . 7 ((((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
112110, 60, 111syl2anc 696 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
113109, 112mpbird 247 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
114 elfzolt2 12665 . . . . 5 (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))
115113, 114syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))
116 modid 12881 . . . 4 (((((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
117102, 62, 103, 115, 116syl22anc 1474 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))))
118 inss1 3968 . . . . . . . 8 ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (𝐴 sadd (𝐵 sadd 𝐶))
119 sadcl 15378 . . . . . . . . 9 ((𝐴 ⊆ ℕ0 ∧ (𝐵 sadd 𝐶) ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
1202, 70, 119syl2anc 696 . . . . . . . 8 (𝜑 → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
121118, 120syl5ss 3747 . . . . . . 7 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ ℕ0)
122 inss2 3969 . . . . . . . 8 ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
123 ssfi 8337 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin)
1245, 122, 123sylancl 697 . . . . . . 7 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin)
125 elfpw 8425 . . . . . . 7 (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ Fin))
126121, 124, 125sylanbrc 701 . . . . . 6 (𝜑 → ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
12714ffvelrni 6513 . . . . . 6 (((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0)
128126, 127syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0)
129128nn0red 11536 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℝ)
130 2nn 11369 . . . . . . 7 2 ∈ ℕ
131130a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
132131, 60nnexpcld 13216 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℕ)
133132nnrpd 12055 . . . 4 (𝜑 → (2↑𝑁) ∈ ℝ+)
134128nn0ge0d 11538 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
135 fvres 6360 . . . . . . . . 9 (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))))
136128, 135syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))))
137 f1ocnvfv2 6688 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
13811, 126, 137sylancr 698 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
139136, 138eqtr3d 2788 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
140139, 122syl6eqss 3788 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
141128nn0zd 11664 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℤ)
142 bitsfzo 15351 . . . . . . 7 ((((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
143141, 60, 142syl2anc 696 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
144140, 143mpbird 247 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
145 elfzolt2 12665 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))
146144, 145syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))
147 modid 12881 . . . 4 (((((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
148129, 133, 134, 146, 147syl22anc 1474 . . 3 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
14990, 117, 1483eqtr3d 2794 . 2 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
150 f1of1 6289 . . . . 5 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
15111, 12, 150mp2b 10 . . . 4 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0
152 f1fveq 6674 . . . 4 (((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ ((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
153151, 152mpan 708 . . 3 (((((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
15499, 126, 153syl2anc 696 . 2 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) ↔ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))))
155149, 154mpbid 222 1 (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  caddwcad 1686  wcel 2131  cin 3706  wss 3707  c0 4050  ifcif 4222  𝒫 cpw 4294   class class class wbr 4796  cmpt 4873  ccnv 5257  cres 5260  wf 6037  1-1wf1 6038  1-1-ontowf1o 6040  cfv 6041  (class class class)co 6805  cmpt2 6807  1𝑜c1o 7714  2𝑜c2o 7715  Fincfn 8113  cr 10119  0cc0 10120  1c1 10121   + caddc 10123   < clt 10258  cle 10259  cmin 10450  cn 11204  2c2 11254  0cn0 11476  cz 11561  +crp 12017  ..^cfzo 12651   mod cmo 12854  seqcseq 12987  cexp 13046  bitscbits 15335   sadd csad 15336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1606  df-tru 1627  df-fal 1630  df-had 1674  df-cad 1687  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-disj 4765  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-dvds 15175  df-bits 15338  df-sad 15367
This theorem is referenced by:  sadass  15387
  Copyright terms: Public domain W3C validator