MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadaddlem Structured version   Visualization version   GIF version

Theorem sadaddlem 15396
Description: Lemma for sadadd 15397. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadaddlem.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadaddlem.k 𝐾 = (bits ↾ ℕ0)
sadaddlem.1 (𝜑𝐴 ∈ ℤ)
sadaddlem.2 (𝜑𝐵 ∈ ℤ)
sadaddlem.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadaddlem (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadaddlem
StepHypRef Expression
1 sadaddlem.k . . . . . . . . . . . . 13 𝐾 = (bits ↾ ℕ0)
21fveq1i 6334 . . . . . . . . . . . 12 (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁)))
3 sadaddlem.1 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℤ)
4 2nn 11392 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
54a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℕ)
6 sadaddlem.3 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
75, 6nnexpcld 13237 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑𝑁) ∈ ℕ)
83, 7zmodcld 12899 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 mod (2↑𝑁)) ∈ ℕ0)
9 fvres 6350 . . . . . . . . . . . . . . 15 ((𝐴 mod (2↑𝑁)) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = (bits‘(𝐴 mod (2↑𝑁))))
108, 9syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = (bits‘(𝐴 mod (2↑𝑁))))
11 bitsmod 15366 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
123, 6, 11syl2anc 573 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
1310, 12eqtrd 2805 . . . . . . . . . . . . 13 (𝜑 → ((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
14 bitsf1o 15375 . . . . . . . . . . . . . 14 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
15 f1ocnvfv 6680 . . . . . . . . . . . . . 14 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐴 mod (2↑𝑁)) ∈ ℕ0) → (((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁))))
1614, 8, 15sylancr 575 . . . . . . . . . . . . 13 (𝜑 → (((bits ↾ ℕ0)‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁))))
1713, 16mpd 15 . . . . . . . . . . . 12 (𝜑 → ((bits ↾ ℕ0)‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁)))
182, 17syl5eq 2817 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) = (𝐴 mod (2↑𝑁)))
1918oveq2d 6812 . . . . . . . . . 10 (𝜑 → (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) = (𝐴 − (𝐴 mod (2↑𝑁))))
2019oveq1d 6811 . . . . . . . . 9 (𝜑 → ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) = ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)))
213zred 11689 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
227nnrpd 12073 . . . . . . . . . 10 (𝜑 → (2↑𝑁) ∈ ℝ+)
23 moddifz 12890 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
2421, 22, 23syl2anc 573 . . . . . . . . 9 (𝜑 → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
2520, 24eqeltrd 2850 . . . . . . . 8 (𝜑 → ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ)
267nnzd 11688 . . . . . . . . 9 (𝜑 → (2↑𝑁) ∈ ℤ)
277nnne0d 11271 . . . . . . . . 9 (𝜑 → (2↑𝑁) ≠ 0)
28 inss1 3981 . . . . . . . . . . . . . 14 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (bits‘𝐴)
29 bitsss 15356 . . . . . . . . . . . . . 14 (bits‘𝐴) ⊆ ℕ0
3028, 29sstri 3761 . . . . . . . . . . . . 13 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0
31 fzofi 12981 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ Fin
32 inss2 3982 . . . . . . . . . . . . . 14 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
33 ssfi 8340 . . . . . . . . . . . . . 14 (((0..^𝑁) ∈ Fin ∧ ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin)
3431, 32, 33mp2an 672 . . . . . . . . . . . . 13 ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin
35 elfpw 8428 . . . . . . . . . . . . 13 (((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((bits‘𝐴) ∩ (0..^𝑁)) ∈ Fin))
3630, 34, 35mpbir2an 690 . . . . . . . . . . . 12 ((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
37 f1ocnv 6291 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
38 f1of 6279 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3914, 37, 38mp2b 10 . . . . . . . . . . . . . 14 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
401feq1i 6175 . . . . . . . . . . . . . 14 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
4139, 40mpbir 221 . . . . . . . . . . . . 13 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
4241ffvelrni 6503 . . . . . . . . . . . 12 (((bits‘𝐴) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℕ0)
4336, 42mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℕ0)
4443nn0zd 11687 . . . . . . . . . 10 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℤ)
453, 44zsubcld 11694 . . . . . . . . 9 (𝜑 → (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ)
46 dvdsval2 15192 . . . . . . . . 9 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ) → ((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ↔ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
4726, 27, 45, 46syl3anc 1476 . . . . . . . 8 (𝜑 → ((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ↔ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
4825, 47mpbird 247 . . . . . . 7 (𝜑 → (2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))))
491fveq1i 6334 . . . . . . . . . . . 12 (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁)))
50 sadaddlem.2 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
5150, 7zmodcld 12899 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 mod (2↑𝑁)) ∈ ℕ0)
52 fvres 6350 . . . . . . . . . . . . . . 15 ((𝐵 mod (2↑𝑁)) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = (bits‘(𝐵 mod (2↑𝑁))))
5351, 52syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = (bits‘(𝐵 mod (2↑𝑁))))
54 bitsmod 15366 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
5550, 6, 54syl2anc 573 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
5653, 55eqtrd 2805 . . . . . . . . . . . . 13 (𝜑 → ((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)))
57 f1ocnvfv 6680 . . . . . . . . . . . . . 14 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐵 mod (2↑𝑁)) ∈ ℕ0) → (((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁))))
5814, 51, 57sylancr 575 . . . . . . . . . . . . 13 (𝜑 → (((bits ↾ ℕ0)‘(𝐵 mod (2↑𝑁))) = ((bits‘𝐵) ∩ (0..^𝑁)) → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁))))
5956, 58mpd 15 . . . . . . . . . . . 12 (𝜑 → ((bits ↾ ℕ0)‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁)))
6049, 59syl5eq 2817 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) = (𝐵 mod (2↑𝑁)))
6160oveq2d 6812 . . . . . . . . . 10 (𝜑 → (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) = (𝐵 − (𝐵 mod (2↑𝑁))))
6261oveq1d 6811 . . . . . . . . 9 (𝜑 → ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) = ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)))
6350zred 11689 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
64 moddifz 12890 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
6563, 22, 64syl2anc 573 . . . . . . . . 9 (𝜑 → ((𝐵 − (𝐵 mod (2↑𝑁))) / (2↑𝑁)) ∈ ℤ)
6662, 65eqeltrd 2850 . . . . . . . 8 (𝜑 → ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ)
67 inss1 3981 . . . . . . . . . . . . . 14 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (bits‘𝐵)
68 bitsss 15356 . . . . . . . . . . . . . 14 (bits‘𝐵) ⊆ ℕ0
6967, 68sstri 3761 . . . . . . . . . . . . 13 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ ℕ0
70 inss2 3982 . . . . . . . . . . . . . 14 ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
71 ssfi 8340 . . . . . . . . . . . . . 14 (((0..^𝑁) ∈ Fin ∧ ((bits‘𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin)
7231, 70, 71mp2an 672 . . . . . . . . . . . . 13 ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin
73 elfpw 8428 . . . . . . . . . . . . 13 (((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((bits‘𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((bits‘𝐵) ∩ (0..^𝑁)) ∈ Fin))
7469, 72, 73mpbir2an 690 . . . . . . . . . . . 12 ((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
7541ffvelrni 6503 . . . . . . . . . . . 12 (((bits‘𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7674, 75mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7776nn0zd 11687 . . . . . . . . . 10 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℤ)
7850, 77zsubcld 11694 . . . . . . . . 9 (𝜑 → (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ)
79 dvdsval2 15192 . . . . . . . . 9 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → ((2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ↔ ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
8026, 27, 78, 79syl3anc 1476 . . . . . . . 8 (𝜑 → ((2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ↔ ((𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) / (2↑𝑁)) ∈ ℤ))
8166, 80mpbird 247 . . . . . . 7 (𝜑 → (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))
82 dvds2add 15224 . . . . . . . 8 (((2↑𝑁) ∈ ℤ ∧ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∈ ℤ ∧ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → (((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∧ (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
8326, 45, 78, 82syl3anc 1476 . . . . . . 7 (𝜑 → (((2↑𝑁) ∥ (𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) ∧ (2↑𝑁) ∥ (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
8448, 81, 83mp2and 679 . . . . . 6 (𝜑 → (2↑𝑁) ∥ ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
853zcnd 11690 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
8650zcnd 11690 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
8743nn0cnd 11560 . . . . . . 7 (𝜑 → (𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) ∈ ℂ)
8876nn0cnd 11560 . . . . . . 7 (𝜑 → (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))) ∈ ℂ)
8985, 86, 87, 88addsub4d 10645 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))) = ((𝐴 − (𝐾‘((bits‘𝐴) ∩ (0..^𝑁)))) + (𝐵 − (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
9084, 89breqtrrd 4815 . . . . 5 (𝜑 → (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁))))))
913, 50zaddcld 11693 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
9244, 77zaddcld 11693 . . . . . 6 (𝜑 → ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ)
93 moddvds 15200 . . . . . 6 (((2↑𝑁) ∈ ℕ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) ∈ ℤ) → (((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
947, 91, 92, 93syl3anc 1476 . . . . 5 (𝜑 → (((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)) ↔ (2↑𝑁) ∥ ((𝐴 + 𝐵) − ((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))))))
9590, 94mpbird 247 . . . 4 (𝜑 → ((𝐴 + 𝐵) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)))
9629a1i 11 . . . . 5 (𝜑 → (bits‘𝐴) ⊆ ℕ0)
9768a1i 11 . . . . 5 (𝜑 → (bits‘𝐵) ⊆ ℕ0)
98 sadaddlem.c . . . . 5 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
9996, 97, 98, 6, 1sadadd3 15391 . . . 4 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘((bits‘𝐴) ∩ (0..^𝑁))) + (𝐾‘((bits‘𝐵) ∩ (0..^𝑁)))) mod (2↑𝑁)))
100 inss1 3981 . . . . . . . . 9 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ((bits‘𝐴) sadd (bits‘𝐵))
101 sadcl 15392 . . . . . . . . . 10 (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0)
10229, 68, 101mp2an 672 . . . . . . . . 9 ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0
103100, 102sstri 3761 . . . . . . . 8 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ℕ0
104 inss2 3982 . . . . . . . . 9 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
105 ssfi 8340 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin)
10631, 104, 105mp2an 672 . . . . . . . 8 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin
107 elfpw 8428 . . . . . . . 8 ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ Fin))
108103, 106, 107mpbir2an 690 . . . . . . 7 (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)
10941ffvelrni 6503 . . . . . . 7 ((((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0)
110108, 109mp1i 13 . . . . . 6 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0)
111110nn0red 11559 . . . . 5 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℝ)
112110nn0ge0d 11561 . . . . 5 (𝜑 → 0 ≤ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
1131fveq1i 6334 . . . . . . . . . 10 (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
114113fveq2i 6336 . . . . . . . . 9 ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
115 fvres 6350 . . . . . . . . . 10 ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
116110, 115syl 17 . . . . . . . . 9 (𝜑 → ((bits ↾ ℕ0)‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
117108a1i 11 . . . . . . . . . 10 (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
118 f1ocnvfv2 6679 . . . . . . . . . 10 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
11914, 117, 118sylancr 575 . . . . . . . . 9 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
120114, 116, 1193eqtr3a 2829 . . . . . . . 8 (𝜑 → (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) = (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))
121120, 104syl6eqss 3804 . . . . . . 7 (𝜑 → (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
122110nn0zd 11687 . . . . . . . 8 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℤ)
123 bitsfzo 15365 . . . . . . . 8 (((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
124122, 6, 123syl2anc 573 . . . . . . 7 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
125121, 124mpbird 247 . . . . . 6 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
126 elfzolt2 12687 . . . . . 6 ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))
127125, 126syl 17 . . . . 5 (𝜑 → (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))
128 modid 12903 . . . . 5 ((((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) ∧ (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) < (2↑𝑁))) → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
129111, 22, 112, 127, 128syl22anc 1477 . . . 4 (𝜑 → ((𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
13095, 99, 1293eqtr2d 2811 . . 3 (𝜑 → ((𝐴 + 𝐵) mod (2↑𝑁)) = (𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁))))
131130fveq2d 6337 . 2 (𝜑 → (bits‘((𝐴 + 𝐵) mod (2↑𝑁))) = (bits‘(𝐾‘(((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)))))
132131, 120eqtr2d 2806 1 (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  caddwcad 1693  wcel 2145  wne 2943  cin 3722  wss 3723  c0 4063  ifcif 4226  𝒫 cpw 4298   class class class wbr 4787  cmpt 4864  ccnv 5249  cres 5252  wf 6026  1-1-ontowf1o 6029  cfv 6030  (class class class)co 6796  cmpt2 6798  1𝑜c1o 7710  2𝑜c2o 7711  Fincfn 8113  cr 10141  0cc0 10142  1c1 10143   + caddc 10145   < clt 10280  cle 10281  cmin 10472   / cdiv 10890  cn 11226  2c2 11276  0cn0 11499  cz 11584  +crp 12035  ..^cfzo 12673   mod cmo 12876  seqcseq 13008  cexp 13067  cdvds 15189  bitscbits 15349   sadd csad 15350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-xor 1613  df-tru 1634  df-fal 1637  df-had 1681  df-cad 1694  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-xnn0 11571  df-z 11585  df-uz 11894  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-dvds 15190  df-bits 15352  df-sad 15381
This theorem is referenced by:  sadadd  15397
  Copyright terms: Public domain W3C validator