MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem Structured version   Visualization version   GIF version

Theorem sadadd2lem 15388
Description: Lemma for sadadd2 15389. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
sadadd2lem.1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Assertion
Ref Expression
sadadd2lem (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd2lem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 inss1 3979 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
2 sadval.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ0)
3 sadval.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℕ0)
4 sadval.c . . . . . . . . . . 11 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
52, 3, 4sadfval 15381 . . . . . . . . . 10 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
6 ssrab2 3834 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ⊆ ℕ0
75, 6syl6eqss 3802 . . . . . . . . 9 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
81, 7syl5ss 3761 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
9 fzofi 12980 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
109a1i 11 . . . . . . . . 9 (𝜑 → (0..^𝑁) ∈ Fin)
11 inss2 3980 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
12 ssfi 8335 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
1310, 11, 12sylancl 566 . . . . . . . 8 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
14 elfpw 8423 . . . . . . . 8 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
158, 13, 14sylanbrc 564 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
16 bitsf1o 15374 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
17 f1ocnv 6290 . . . . . . . . . 10 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
18 f1of 6278 . . . . . . . . . 10 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
1916, 17, 18mp2b 10 . . . . . . . . 9 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
20 sadcadd.k . . . . . . . . . 10 𝐾 = (bits ↾ ℕ0)
2120feq1i 6176 . . . . . . . . 9 (𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
2219, 21mpbir 221 . . . . . . . 8 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
2322ffvelrni 6501 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
2415, 23syl 17 . . . . . 6 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
2524nn0cnd 11554 . . . . 5 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℂ)
26 2nn0 11510 . . . . . . . . . 10 2 ∈ ℕ0
2726a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ0)
28 sadcp1.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2927, 28nn0expcld 13237 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℕ0)
30 0nn0 11508 . . . . . . . 8 0 ∈ ℕ0
31 ifcl 4267 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℕ0)
3229, 30, 31sylancl 566 . . . . . . 7 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℕ0)
3332nn0cnd 11554 . . . . . 6 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) ∈ ℂ)
34 1nn0 11509 . . . . . . . . . . 11 1 ∈ ℕ0
3534a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ0)
3628, 35nn0addcld 11556 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
3727, 36nn0expcld 13237 . . . . . . . 8 (𝜑 → (2↑(𝑁 + 1)) ∈ ℕ0)
38 ifcl 4267 . . . . . . . 8 (((2↑(𝑁 + 1)) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℕ0)
3937, 30, 38sylancl 566 . . . . . . 7 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℕ0)
4039nn0cnd 11554 . . . . . 6 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) ∈ ℂ)
4133, 40addcld 10260 . . . . 5 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) ∈ ℂ)
4225, 41addcld 10260 . . . 4 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) ∈ ℂ)
43 inss1 3979 . . . . . . . . . 10 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
4443, 2syl5ss 3761 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
45 inss2 3980 . . . . . . . . . 10 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
46 ssfi 8335 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
4710, 45, 46sylancl 566 . . . . . . . . 9 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
48 elfpw 8423 . . . . . . . . 9 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
4944, 47, 48sylanbrc 564 . . . . . . . 8 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
5022ffvelrni 6501 . . . . . . . 8 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
5149, 50syl 17 . . . . . . 7 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
5251nn0cnd 11554 . . . . . 6 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
53 inss1 3979 . . . . . . . . . 10 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
5453, 3syl5ss 3761 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
55 inss2 3980 . . . . . . . . . 10 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
56 ssfi 8335 . . . . . . . . . 10 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
5710, 55, 56sylancl 566 . . . . . . . . 9 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
58 elfpw 8423 . . . . . . . . 9 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
5954, 57, 58sylanbrc 564 . . . . . . . 8 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
6022ffvelrni 6501 . . . . . . . 8 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
6159, 60syl 17 . . . . . . 7 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
6261nn0cnd 11554 . . . . . 6 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
6352, 62addcld 10260 . . . . 5 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℂ)
64 ifcl 4267 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
6529, 30, 64sylancl 566 . . . . . . 7 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
6665nn0cnd 11554 . . . . . 6 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℂ)
67 ifcl 4267 . . . . . . . 8 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6829, 30, 67sylancl 566 . . . . . . 7 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6968nn0cnd 11554 . . . . . 6 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℂ)
7066, 69addcld 10260 . . . . 5 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℂ)
7163, 70addcld 10260 . . . 4 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℂ)
7229nn0cnd 11554 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℂ)
7372adantr 466 . . . . 5 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ∈ ℂ)
74 0cnd 10234 . . . . 5 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → 0 ∈ ℂ)
7573, 74ifclda 4257 . . . 4 (𝜑 → if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0) ∈ ℂ)
76 sadadd2lem.1 . . . . . 6 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
772, 3, 4, 28sadval 15385 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
7877ifbid 4245 . . . . . . . 8 (𝜑 → if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) = if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0))
792, 3, 4, 28sadcp1 15384 . . . . . . . . 9 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
8027nn0cnd 11554 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
8180, 28expp1d 13215 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
8272, 80mulcomd 10262 . . . . . . . . . 10 (𝜑 → ((2↑𝑁) · 2) = (2 · (2↑𝑁)))
8381, 82eqtrd 2804 . . . . . . . . 9 (𝜑 → (2↑(𝑁 + 1)) = (2 · (2↑𝑁)))
8479, 83ifbieq1d 4246 . . . . . . . 8 (𝜑 → if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0))
8578, 84oveq12d 6810 . . . . . . 7 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)))
86 sadadd2lem2 15379 . . . . . . . 8 ((2↑𝑁) ∈ ℂ → (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8772, 86syl 17 . . . . . . 7 (𝜑 → (if(hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2↑𝑁), 0) + if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), (2 · (2↑𝑁)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8885, 87eqtrd 2804 . . . . . 6 (𝜑 → (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
8976, 88oveq12d 6810 . . . . 5 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))))
9025, 41, 75add32d 10464 . . . . 5 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))))
9163, 70, 75addassd 10263 . . . . 5 (𝜑 → ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))))
9289, 90, 913eqtr4d 2814 . . . 4 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
9342, 71, 75, 92addcan2ad 10443 . . 3 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9425, 33, 40addassd 10263 . . 3 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + (if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0))))
9552, 66, 62, 69add4d 10465 . . 3 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9693, 94, 953eqtr4d 2814 . 2 (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
9720bitsinvp1 15378 . . . 4 (((𝐴 sadd 𝐵) ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)))
987, 28, 97syl2anc 565 . . 3 (𝜑 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)))
9998oveq1d 6807 . 2 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(𝑁 ∈ (𝐴 sadd 𝐵), (2↑𝑁), 0)) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)))
10020bitsinvp1 15378 . . . 4 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
1012, 28, 100syl2anc 565 . . 3 (𝜑 → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
10220bitsinvp1 15378 . . . 4 ((𝐵 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
1033, 28, 102syl2anc 565 . . 3 (𝜑 → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
104101, 103oveq12d 6810 . 2 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
10596, 99, 1043eqtr4d 2814 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1630  haddwhad 1679  caddwcad 1692  wcel 2144  {crab 3064  cin 3720  wss 3721  c0 4061  ifcif 4223  𝒫 cpw 4295  cmpt 4861  ccnv 5248  cres 5251  wf 6027  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6792  cmpt2 6794  1𝑜c1o 7705  2𝑜c2o 7706  Fincfn 8108  cc 10135  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  cmin 10467  2c2 11271  0cn0 11493  ..^cfzo 12672  seqcseq 13007  cexp 13066  bitscbits 15348   sadd csad 15349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-xor 1612  df-tru 1633  df-fal 1636  df-had 1680  df-cad 1693  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-disj 4753  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-dvds 15189  df-bits 15351  df-sad 15380
This theorem is referenced by:  sadadd2  15389
  Copyright terms: Public domain W3C validator