MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2 Structured version   Visualization version   GIF version

Theorem sadadd2 15229
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
sadadd2 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadadd2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 6698 . . . . . . . . . . 11 (𝑥 = 0 → (0..^𝑥) = (0..^0))
3 fzo0 12531 . . . . . . . . . . 11 (0..^0) = ∅
42, 3syl6eq 2701 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = ∅)
54ineq2d 3847 . . . . . . . . 9 (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ ∅))
6 in0 4001 . . . . . . . . 9 ((𝐴 sadd 𝐵) ∩ ∅) = ∅
75, 6syl6eq 2701 . . . . . . . 8 (𝑥 = 0 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ∅)
87fveq2d 6233 . . . . . . 7 (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘∅))
9 sadcadd.k . . . . . . . . 9 𝐾 = (bits ↾ ℕ0)
10 0nn0 11345 . . . . . . . . . . 11 0 ∈ ℕ0
11 fvres 6245 . . . . . . . . . . 11 (0 ∈ ℕ0 → ((bits ↾ ℕ0)‘0) = (bits‘0))
1210, 11ax-mp 5 . . . . . . . . . 10 ((bits ↾ ℕ0)‘0) = (bits‘0)
13 0bits 15208 . . . . . . . . . 10 (bits‘0) = ∅
1412, 13eqtr2i 2674 . . . . . . . . 9 ∅ = ((bits ↾ ℕ0)‘0)
159, 14fveq12i 6234 . . . . . . . 8 (𝐾‘∅) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0))
16 bitsf1o 15214 . . . . . . . . 9 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
17 f1ocnvfv1 6572 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ 0 ∈ ℕ0) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0)
1816, 10, 17mp2an 708 . . . . . . . 8 ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘0)) = 0
1915, 18eqtri 2673 . . . . . . 7 (𝐾‘∅) = 0
208, 19syl6eq 2701 . . . . . 6 (𝑥 = 0 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = 0)
21 fveq2 6229 . . . . . . . 8 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
2221eleq2d 2716 . . . . . . 7 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
23 oveq2 6698 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = (2↑0))
2422, 23ifbieq1d 4142 . . . . . 6 (𝑥 = 0 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘0), (2↑0), 0))
2520, 24oveq12d 6708 . . . . 5 (𝑥 = 0 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)))
264ineq2d 3847 . . . . . . . . . 10 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ ∅))
27 in0 4001 . . . . . . . . . 10 (𝐴 ∩ ∅) = ∅
2826, 27syl6eq 2701 . . . . . . . . 9 (𝑥 = 0 → (𝐴 ∩ (0..^𝑥)) = ∅)
2928fveq2d 6233 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘∅))
3029, 19syl6eq 2701 . . . . . . 7 (𝑥 = 0 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = 0)
314ineq2d 3847 . . . . . . . . . 10 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ ∅))
32 in0 4001 . . . . . . . . . 10 (𝐵 ∩ ∅) = ∅
3331, 32syl6eq 2701 . . . . . . . . 9 (𝑥 = 0 → (𝐵 ∩ (0..^𝑥)) = ∅)
3433fveq2d 6233 . . . . . . . 8 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘∅))
3534, 19syl6eq 2701 . . . . . . 7 (𝑥 = 0 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = 0)
3630, 35oveq12d 6708 . . . . . 6 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = (0 + 0))
37 00id 10249 . . . . . 6 (0 + 0) = 0
3836, 37syl6eq 2701 . . . . 5 (𝑥 = 0 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = 0)
3925, 38eqeq12d 2666 . . . 4 (𝑥 = 0 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0))
4039imbi2d 329 . . 3 (𝑥 = 0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0)))
41 oveq2 6698 . . . . . . . 8 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
4241ineq2d 3847 . . . . . . 7 (𝑥 = 𝑘 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑘)))
4342fveq2d 6233 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))))
44 fveq2 6229 . . . . . . . 8 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
4544eleq2d 2716 . . . . . . 7 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
46 oveq2 6698 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
4745, 46ifbieq1d 4142 . . . . . 6 (𝑥 = 𝑘 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0))
4843, 47oveq12d 6708 . . . . 5 (𝑥 = 𝑘 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)))
4941ineq2d 3847 . . . . . . 7 (𝑥 = 𝑘 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑘)))
5049fveq2d 6233 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑘))))
5141ineq2d 3847 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑘)))
5251fveq2d 6233 . . . . . 6 (𝑥 = 𝑘 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑘))))
5350, 52oveq12d 6708 . . . . 5 (𝑥 = 𝑘 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
5448, 53eqeq12d 2666 . . . 4 (𝑥 = 𝑘 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))))
5554imbi2d 329 . . 3 (𝑥 = 𝑘 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))))
56 oveq2 6698 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
5756ineq2d 3847 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1))))
5857fveq2d 6233 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))))
59 fveq2 6229 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
6059eleq2d 2716 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
61 oveq2 6698 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
6260, 61ifbieq1d 4142 . . . . . 6 (𝑥 = (𝑘 + 1) → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0))
6358, 62oveq12d 6708 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)))
6456ineq2d 3847 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^(𝑘 + 1))))
6564fveq2d 6233 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))))
6656ineq2d 3847 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^(𝑘 + 1))))
6766fveq2d 6233 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))
6865, 67oveq12d 6708 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
6963, 68eqeq12d 2666 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
7069imbi2d 329 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
71 oveq2 6698 . . . . . . . 8 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
7271ineq2d 3847 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴 sadd 𝐵) ∩ (0..^𝑥)) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7372fveq2d 6233 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) = (𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
74 fveq2 6229 . . . . . . . 8 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
7574eleq2d 2716 . . . . . . 7 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
76 oveq2 6698 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
7775, 76ifbieq1d 4142 . . . . . 6 (𝑥 = 𝑁 → if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0) = if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0))
7873, 77oveq12d 6708 . . . . 5 (𝑥 = 𝑁 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)))
7971ineq2d 3847 . . . . . . 7 (𝑥 = 𝑁 → (𝐴 ∩ (0..^𝑥)) = (𝐴 ∩ (0..^𝑁)))
8079fveq2d 6233 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘(𝐴 ∩ (0..^𝑥))) = (𝐾‘(𝐴 ∩ (0..^𝑁))))
8171ineq2d 3847 . . . . . . 7 (𝑥 = 𝑁 → (𝐵 ∩ (0..^𝑥)) = (𝐵 ∩ (0..^𝑁)))
8281fveq2d 6233 . . . . . 6 (𝑥 = 𝑁 → (𝐾‘(𝐵 ∩ (0..^𝑥))) = (𝐾‘(𝐵 ∩ (0..^𝑁))))
8380, 82oveq12d 6708 . . . . 5 (𝑥 = 𝑁 → ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
8478, 83eqeq12d 2666 . . . 4 (𝑥 = 𝑁 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥)))) ↔ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
8584imbi2d 329 . . 3 (𝑥 = 𝑁 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑥))) + if(∅ ∈ (𝐶𝑥), (2↑𝑥), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑥))) + (𝐾‘(𝐵 ∩ (0..^𝑥))))) ↔ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))))
86 sadval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
87 sadval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
88 sadval.c . . . . . . 7 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
8986, 87, 88sadc0 15223 . . . . . 6 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
9089iffalsed 4130 . . . . 5 (𝜑 → if(∅ ∈ (𝐶‘0), (2↑0), 0) = 0)
9190oveq2d 6706 . . . 4 (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = (0 + 0))
9291, 37syl6eq 2701 . . 3 (𝜑 → (0 + if(∅ ∈ (𝐶‘0), (2↑0), 0)) = 0)
9386ad2antrr 762 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐴 ⊆ ℕ0)
9487ad2antrr 762 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝐵 ⊆ ℕ0)
95 simplr 807 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → 𝑘 ∈ ℕ0)
96 simpr 476 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))))
9793, 94, 88, 95, 9, 96sadadd2lem 15228 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))
9897ex 449 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1)))))))
9998expcom 450 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → (((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘)))) → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
10099a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑘))) + if(∅ ∈ (𝐶𝑘), (2↑𝑘), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑘))) + (𝐾‘(𝐵 ∩ (0..^𝑘))))) → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑘 + 1)))) + if(∅ ∈ (𝐶‘(𝑘 + 1)), (2↑(𝑘 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑘 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑘 + 1))))))))
10140, 55, 70, 85, 92, 100nn0ind 11510 . 2 (𝑁 ∈ ℕ0 → (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
1021, 101mpcom 38 1 (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  caddwcad 1585  wcel 2030  cin 3606  wss 3607  c0 3948  ifcif 4119  𝒫 cpw 4191  cmpt 4762  ccnv 5142  cres 5145  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cmpt2 6692  1𝑜c1o 7598  2𝑜c2o 7599  Fincfn 7997  0cc0 9974  1c1 9975   + caddc 9977  cmin 10304  2c2 11108  0cn0 11330  ..^cfzo 12504  seqcseq 12841  cexp 12900  bitscbits 15188   sadd csad 15189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-xor 1505  df-tru 1526  df-fal 1529  df-had 1573  df-cad 1586  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-bits 15191  df-sad 15220
This theorem is referenced by:  sadadd3  15230
  Copyright terms: Public domain W3C validator