MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3sndisj Structured version   Visualization version   GIF version

Theorem s3sndisj 13938
Description: The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021.)
Assertion
Ref Expression
s3sndisj ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐

Proof of Theorem s3sndisj
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 orc 883 . . . . 5 (𝑐 = 𝑑 → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
21a1d 25 . . . 4 (𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
3 s3cli 13857 . . . . . . . . . . . 12 ⟨“𝐴𝐵𝑐”⟩ ∈ Word V
4 elex 3369 . . . . . . . . . . . . . . 15 (𝐴𝑋𝐴 ∈ V)
5 elex 3369 . . . . . . . . . . . . . . 15 (𝐵𝑌𝐵 ∈ V)
64, 5anim12i 601 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 elex 3369 . . . . . . . . . . . . . . 15 (𝑑𝑍𝑑 ∈ V)
87adantl 468 . . . . . . . . . . . . . 14 ((𝑐𝑍𝑑𝑍) → 𝑑 ∈ V)
96, 8anim12i 601 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
10 df-3an 1100 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
119, 10sylibr 225 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V))
12 eqwrds3 13936 . . . . . . . . . . . 12 ((⟨“𝐴𝐵𝑐”⟩ ∈ Word V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
133, 11, 12sylancr 576 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
14 vex 3358 . . . . . . . . . . . . . 14 𝑐 ∈ V
15 s3fv2 13869 . . . . . . . . . . . . . 14 (𝑐 ∈ V → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐)
1614, 15ax-mp 5 . . . . . . . . . . . . 13 (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐
17 simp3 1159 . . . . . . . . . . . . 13 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)
1816, 17syl5eqr 2822 . . . . . . . . . . . 12 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → 𝑐 = 𝑑)
1918adantl 468 . . . . . . . . . . 11 (((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)) → 𝑐 = 𝑑)
2013, 19syl6bi 244 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ → 𝑐 = 𝑑))
2120con3rr3 152 . . . . . . . . 9 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩))
2221imp 394 . . . . . . . 8 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
2322neqned 2953 . . . . . . 7 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩)
24 disjsn2 4395 . . . . . . 7 (⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩ → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2523, 24syl 17 . . . . . 6 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2625olcd 890 . . . . 5 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2726ex 398 . . . 4 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
282, 27pm2.61i 176 . . 3 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2928ralrimivva 3123 . 2 ((𝐴𝑋𝐵𝑌) → ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
30 eqidd 2775 . . . . 5 (𝑐 = 𝑑𝐴 = 𝐴)
31 eqidd 2775 . . . . 5 (𝑐 = 𝑑𝐵 = 𝐵)
32 id 22 . . . . 5 (𝑐 = 𝑑𝑐 = 𝑑)
3330, 31, 32s3eqd 13840 . . . 4 (𝑐 = 𝑑 → ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
3433sneqd 4338 . . 3 (𝑐 = 𝑑 → {⟨“𝐴𝐵𝑐”⟩} = {⟨“𝐴𝐵𝑑”⟩})
3534disjor 4779 . 2 (Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩} ↔ ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
3629, 35sylibr 225 1 ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 383  wo 863  w3a 1098   = wceq 1634  wcel 2148  wne 2946  wral 3064  Vcvv 3355  cin 3728  c0 4073  {csn 4326  Disj wdisj 4765  cfv 6042  0cc0 10159  1c1 10160  2c2 11293  3c3 11294  chash 13343  Word cword 13509  ⟨“cs3 13818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-disj 4766  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-card 8986  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-2 11302  df-3 11303  df-n0 11517  df-z 11602  df-uz 11911  df-fz 12556  df-fzo 12696  df-hash 13344  df-word 13517  df-concat 13519  df-s1 13520  df-s2 13824  df-s3 13825
This theorem is referenced by:  fusgreghash2wspv  27538
  Copyright terms: Public domain W3C validator