![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2s5 | Structured version Visualization version GIF version |
Description: Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.) |
Ref | Expression |
---|---|
s2s5 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶𝐷𝐸𝐹𝐺”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1s2 13888 | . . . 4 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴”〉 ++ 〈“𝐵𝐶”〉) | |
2 | 1 | eqcomi 2769 | . . 3 ⊢ (〈“𝐴”〉 ++ 〈“𝐵𝐶”〉) = 〈“𝐴𝐵𝐶”〉 |
3 | 2 | oveq1i 6824 | . 2 ⊢ ((〈“𝐴”〉 ++ 〈“𝐵𝐶”〉) ++ 〈“𝐷𝐸𝐹𝐺”〉) = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷𝐸𝐹𝐺”〉) |
4 | s1cli 13595 | . . 3 ⊢ 〈“𝐴”〉 ∈ Word V | |
5 | s4cli 13847 | . . 3 ⊢ 〈“𝐷𝐸𝐹𝐺”〉 ∈ Word V | |
6 | df-s2 13813 | . . 3 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
7 | s1s4 13890 | . . 3 ⊢ 〈“𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐶”〉 ++ 〈“𝐷𝐸𝐹𝐺”〉) | |
8 | 4, 5, 6, 7 | cats2cat 13827 | . 2 ⊢ (〈“𝐴𝐵”〉 ++ 〈“𝐶𝐷𝐸𝐹𝐺”〉) = ((〈“𝐴”〉 ++ 〈“𝐵𝐶”〉) ++ 〈“𝐷𝐸𝐹𝐺”〉) |
9 | s3s4 13898 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷𝐸𝐹𝐺”〉) | |
10 | 3, 8, 9 | 3eqtr4ri 2793 | 1 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶𝐷𝐸𝐹𝐺”〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 (class class class)co 6814 ++ cconcat 13499 〈“cs1 13500 〈“cs2 13806 〈“cs3 13807 〈“cs4 13808 〈“cs5 13809 〈“cs7 13811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 df-hash 13332 df-word 13505 df-concat 13507 df-s1 13508 df-s2 13813 df-s3 13814 df-s4 13815 df-s5 13816 df-s6 13817 df-s7 13818 |
This theorem is referenced by: konigsberglem1 27425 konigsberglem2 27426 konigsberglem3 27427 |
Copyright terms: Public domain | W3C validator |