![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
Ref | Expression |
---|---|
s2eqd | ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | 1 | s1eqd 13592 | . . 3 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝑁”〉) |
3 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
4 | 3 | s1eqd 13592 | . . 3 ⊢ (𝜑 → 〈“𝐵”〉 = 〈“𝑂”〉) |
5 | 2, 4 | oveq12d 6833 | . 2 ⊢ (𝜑 → (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝑁”〉 ++ 〈“𝑂”〉)) |
6 | df-s2 13814 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
7 | df-s2 13814 | . 2 ⊢ 〈“𝑁𝑂”〉 = (〈“𝑁”〉 ++ 〈“𝑂”〉) | |
8 | 5, 6, 7 | 3eqtr4g 2820 | 1 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 (class class class)co 6815 ++ cconcat 13500 〈“cs1 13501 〈“cs2 13807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-iota 6013 df-fv 6058 df-ov 6818 df-s1 13509 df-s2 13814 |
This theorem is referenced by: s3eqd 13830 swrds2m 13907 wrdl2exs2 13912 swrd2lsw 13917 efgi 18353 efgi0 18354 efgi1 18355 efgtf 18356 efgtval 18357 efgval2 18358 frgpuplem 18406 2clwwlk2clwwlklem 27525 |
Copyright terms: Public domain | W3C validator |