Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1val Structured version   Visualization version   GIF version

Theorem s1val 13577
 Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1val (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})

Proof of Theorem s1val
StepHypRef Expression
1 df-s1 13497 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
2 fvi 6397 . . . 4 (𝐴𝑉 → ( I ‘𝐴) = 𝐴)
32opeq2d 4544 . . 3 (𝐴𝑉 → ⟨0, ( I ‘𝐴)⟩ = ⟨0, 𝐴⟩)
43sneqd 4326 . 2 (𝐴𝑉 → {⟨0, ( I ‘𝐴)⟩} = {⟨0, 𝐴⟩})
51, 4syl5eq 2816 1 (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1630   ∈ wcel 2144  {csn 4314  ⟨cop 4320   I cid 5156  ‘cfv 6031  0cc0 10137  ⟨“cs1 13489 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-s1 13497 This theorem is referenced by:  s1rn  13578  s1cl  13581  s1dmALT  13588  s1fv  13589  s111  13594  repsw1  13738  s1co  13787  s2prop  13860  ofs1  13918  gsumws1  17583  uspgr1ewop  26362  usgr2v1e2w  26366  0wlkons1  27298  ofcs1  30955  signstf0  30979
 Copyright terms: Public domain W3C validator