![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s111 | Structured version Visualization version GIF version |
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s111 | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 13578 | . . 3 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
2 | s1val 13578 | . . 3 ⊢ (𝑇 ∈ 𝐴 → 〈“𝑇”〉 = {〈0, 𝑇〉}) | |
3 | 1, 2 | eqeqan12d 2787 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ {〈0, 𝑆〉} = {〈0, 𝑇〉})) |
4 | opex 5060 | . . 3 ⊢ 〈0, 𝑆〉 ∈ V | |
5 | sneqbg 4506 | . . 3 ⊢ (〈0, 𝑆〉 ∈ V → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) |
7 | 0z 11590 | . . . 4 ⊢ 0 ∈ ℤ | |
8 | eqid 2771 | . . . . 5 ⊢ 0 = 0 | |
9 | opthg 5073 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ (0 = 0 ∧ 𝑆 = 𝑇))) | |
10 | 9 | baibd 529 | . . . . 5 ⊢ (((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) ∧ 0 = 0) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
11 | 8, 10 | mpan2 671 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
12 | 7, 11 | mpan 670 | . . 3 ⊢ (𝑆 ∈ 𝐴 → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
13 | 12 | adantr 466 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
14 | 3, 6, 13 | 3bitrd 294 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 {csn 4316 〈cop 4322 0cc0 10138 ℤcz 11579 〈“cs1 13490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-i2m1 10206 ax-1ne0 10207 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-neg 10471 df-z 11580 df-s1 13498 |
This theorem is referenced by: ccats1alpha 13599 2swrd1eqwrdeq 13663 s2eq2seq 13891 s3eq3seq 13893 2swrd2eqwrdeq 13906 efgredlemc 18365 mvhf1 31794 pfxsuff1eqwrdeq 41935 |
Copyright terms: Public domain | W3C validator |