![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruv | Structured version Visualization version GIF version |
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
Ref | Expression |
---|---|
ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-v 3353 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
2 | equid 2097 | . . . 4 ⊢ 𝑥 = 𝑥 | |
3 | elirrv 8657 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
4 | 3 | nelir 3049 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
5 | 2, 4 | 2th 254 | . . 3 ⊢ (𝑥 = 𝑥 ↔ 𝑥 ∉ 𝑥) |
6 | 5 | abbii 2888 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝑥 ∉ 𝑥} |
7 | 1, 6 | eqtr2i 2794 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 {cab 2757 ∉ wnel 3046 Vcvv 3351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-reg 8653 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-nel 3047 df-ral 3066 df-rex 3067 df-v 3353 df-dif 3726 df-un 3728 df-nul 4064 df-sn 4317 df-pr 4319 |
This theorem is referenced by: ruALT 8664 |
Copyright terms: Public domain | W3C validator |