MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrprc Structured version   Visualization version   GIF version

Theorem rusgrprc 26667
Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rusgrprc {𝑔𝑔RegUSGraph0} ∉ V

Proof of Theorem rusgrprc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 rgrusgrprc 26666 . 2 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
2 vex 3331 . . . . . . 7 𝑔 ∈ V
3 0xnn0 11532 . . . . . . 7 0 ∈ ℕ0*
4 eqid 2748 . . . . . . . 8 (Vtx‘𝑔) = (Vtx‘𝑔)
5 eqid 2748 . . . . . . . 8 (VtxDeg‘𝑔) = (VtxDeg‘𝑔)
64, 5isrusgr0 26643 . . . . . . 7 ((𝑔 ∈ V ∧ 0 ∈ ℕ0*) → (𝑔RegUSGraph0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
72, 3, 6mp2an 710 . . . . . 6 (𝑔RegUSGraph0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
8 3ancomb 1086 . . . . . 6 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*))
9 df-3an 1074 . . . . . . 7 ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*) ↔ ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ∧ 0 ∈ ℕ0*))
103, 9mpbiran2 992 . . . . . 6 ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*) ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
117, 8, 103bitri 286 . . . . 5 (𝑔RegUSGraph0 ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
1211abbii 2865 . . . 4 {𝑔𝑔RegUSGraph0} = {𝑔 ∣ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)}
13 df-rab 3047 . . . 4 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∣ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)}
1412, 13eqtr4i 2773 . . 3 {𝑔𝑔RegUSGraph0} = {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0}
15 neleq1 3028 . . 3 ({𝑔𝑔RegUSGraph0} = {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} → ({𝑔𝑔RegUSGraph0} ∉ V ↔ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V))
1614, 15ax-mp 5 . 2 ({𝑔𝑔RegUSGraph0} ∉ V ↔ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V)
171, 16mpbir 221 1 {𝑔𝑔RegUSGraph0} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127  {cab 2734  wnel 3023  wral 3038  {crab 3042  Vcvv 3328   class class class wbr 4792  cfv 6037  0cc0 10099  0*cxnn0 11526  Vtxcvtx 26044  USGraphcusgr 26214  VtxDegcvtxdg 26542  RegUSGraphcrusgr 26633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-n0 11456  df-xnn0 11527  df-z 11541  df-uz 11851  df-xadd 12111  df-fz 12491  df-hash 13283  df-iedg 26047  df-edg 26110  df-uhgr 26123  df-upgr 26147  df-uspgr 26215  df-usgr 26216  df-vtxdg 26543  df-rgr 26634  df-rusgr 26635
This theorem is referenced by:  rgrprc  26668
  Copyright terms: Public domain W3C validator