![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrnumwwlklem | Structured version Visualization version GIF version |
Description: Lemma for rusgrnumwwlk 26942 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
rusgrnumwwlk.l | ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
Ref | Expression |
---|---|
rusgrnumwwlklem | ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6697 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺)) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺)) |
3 | eqeq2 2662 | . . . . 5 ⊢ (𝑣 = 𝑃 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑃)) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑃)) |
5 | 2, 4 | rabeqbidv 3226 | . . 3 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) |
6 | 5 | fveq2d 6233 | . 2 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (#‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
7 | rusgrnumwwlk.l | . 2 ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) | |
8 | fvex 6239 | . 2 ⊢ (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) ∈ V | |
9 | 6, 7, 8 | ovmpt2a 6833 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 0cc0 9974 ℕ0cn0 11330 #chash 13157 Vtxcvtx 25919 WWalksN cwwlksn 26774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 |
This theorem is referenced by: rusgrnumwwlkb0 26938 rusgrnumwwlkb1 26939 rusgr0edg 26940 rusgrnumwwlks 26941 rusgrnumwwlkg 26943 |
Copyright terms: Public domain | W3C validator |