Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgr1vtx Structured version   Visualization version   GIF version

Theorem rusgr1vtx 26540
 Description: If a k-regular simple graph has only one vertex, then k must be 0. (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 27-Dec-2020.)
Assertion
Ref Expression
rusgr1vtx (((#‘(Vtx‘𝐺)) = 1 ∧ 𝐺RegUSGraph𝐾) → 𝐾 = 0)

Proof of Theorem rusgr1vtx
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nbgr1vtx 26299 . . . 4 ((#‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝑣) = ∅)
21ralrimivw 2996 . . 3 ((#‘(Vtx‘𝐺)) = 1 → ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅)
3 eqid 2651 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
43rusgrpropnb 26535 . . 3 (𝐺RegUSGraph𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
52, 4anim12i 589 . 2 (((#‘(Vtx‘𝐺)) = 1 ∧ 𝐺RegUSGraph𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾)))
6 fvex 6239 . . . . . . . 8 (Vtx‘𝐺) ∈ V
7 rusgr1vtxlem 26539 . . . . . . . . 9 (((∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) ∧ ((Vtx‘𝐺) ∈ V ∧ (#‘(Vtx‘𝐺)) = 1)) → 𝐾 = 0)
87ex 449 . . . . . . . 8 ((∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → (((Vtx‘𝐺) ∈ V ∧ (#‘(Vtx‘𝐺)) = 1) → 𝐾 = 0))
96, 8mpani 712 . . . . . . 7 ((∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ∧ ∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅) → ((#‘(Vtx‘𝐺)) = 1 → 𝐾 = 0))
109ex 449 . . . . . 6 (∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((#‘(Vtx‘𝐺)) = 1 → 𝐾 = 0)))
11103ad2ant3 1104 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((#‘(Vtx‘𝐺)) = 1 → 𝐾 = 0)))
1211com13 88 . . . 4 ((#‘(Vtx‘𝐺)) = 1 → (∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ → ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 = 0)))
1312impd 446 . . 3 ((#‘(Vtx‘𝐺)) = 1 → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0))
1413adantr 480 . 2 (((#‘(Vtx‘𝐺)) = 1 ∧ 𝐺RegUSGraph𝐾) → ((∀𝑣 ∈ (Vtx‘𝐺)(𝐺 NeighbVtx 𝑣) = ∅ ∧ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)(#‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) → 𝐾 = 0))
155, 14mpd 15 1 (((#‘(Vtx‘𝐺)) = 1 ∧ 𝐺RegUSGraph𝐾) → 𝐾 = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231  ∅c0 3948   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975  ℕ0*cxnn0 11401  #chash 13157  Vtxcvtx 25919  USGraphcusgr 26089   NeighbVtx cnbgr 26269  RegUSGraphcrusgr 26508 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-xadd 11985  df-fz 12365  df-hash 13158  df-edg 25985  df-uhgr 25998  df-ushgr 25999  df-upgr 26022  df-umgr 26023  df-uspgr 26090  df-usgr 26091  df-nbgr 26270  df-vtxdg 26418  df-rgr 26509  df-rusgr 26510 This theorem is referenced by:  frgrreg  27381
 Copyright terms: Public domain W3C validator