![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruclem4 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15092. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
Ref | Expression |
---|---|
ruclem4 | ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.5 | . . 3 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
2 | 1 | fveq1i 6305 | . 2 ⊢ (𝐺‘0) = (seq0(𝐷, 𝐶)‘0) |
3 | 0z 11501 | . . 3 ⊢ 0 ∈ ℤ | |
4 | ruc.4 | . . . . . 6 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
5 | dfn2 11418 | . . . . . . . . 9 ⊢ ℕ = (ℕ0 ∖ {0}) | |
6 | 5 | reseq2i 5500 | . . . . . . . 8 ⊢ (𝐹 ↾ ℕ) = (𝐹 ↾ (ℕ0 ∖ {0})) |
7 | ruc.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
8 | ffn 6158 | . . . . . . . . 9 ⊢ (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ) | |
9 | fnresdm 6113 | . . . . . . . . 9 ⊢ (𝐹 Fn ℕ → (𝐹 ↾ ℕ) = 𝐹) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ ℕ) = 𝐹) |
11 | 6, 10 | syl5reqr 2773 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (ℕ0 ∖ {0}))) |
12 | 11 | uneq2d 3875 | . . . . . 6 ⊢ (𝜑 → ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
13 | 4, 12 | syl5eq 2770 | . . . . 5 ⊢ (𝜑 → 𝐶 = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))) |
14 | 13 | fveq1d 6306 | . . . 4 ⊢ (𝜑 → (𝐶‘0) = (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0)) |
15 | c0ex 10147 | . . . . 5 ⊢ 0 ∈ V | |
16 | opex 5037 | . . . . 5 ⊢ 〈0, 1〉 ∈ V | |
17 | eqid 2724 | . . . . 5 ⊢ ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) = ({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0}))) | |
18 | 15, 16, 17 | fvsnun1 6564 | . . . 4 ⊢ (({〈0, 〈0, 1〉〉} ∪ (𝐹 ↾ (ℕ0 ∖ {0})))‘0) = 〈0, 1〉 |
19 | 14, 18 | syl6eq 2774 | . . 3 ⊢ (𝜑 → (𝐶‘0) = 〈0, 1〉) |
20 | 3, 19 | seq1i 12930 | . 2 ⊢ (𝜑 → (seq0(𝐷, 𝐶)‘0) = 〈0, 1〉) |
21 | 2, 20 | syl5eq 2770 | 1 ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ⦋csb 3639 ∖ cdif 3677 ∪ cun 3678 ifcif 4194 {csn 4285 〈cop 4291 class class class wbr 4760 × cxp 5216 ↾ cres 5220 Fn wfn 5996 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 ↦ cmpt2 6767 1st c1st 7283 2nd c2nd 7284 ℝcr 10048 0cc0 10049 1c1 10050 + caddc 10052 < clt 10187 / cdiv 10797 ℕcn 11133 2c2 11183 ℕ0cn0 11405 seqcseq 12916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-n0 11406 df-z 11491 df-uz 11801 df-seq 12917 |
This theorem is referenced by: ruclem6 15084 ruclem8 15086 ruclem11 15089 |
Copyright terms: Public domain | W3C validator |