MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem2 Structured version   Visualization version   GIF version

Theorem ruclem2 15005
Description: Lemma for ruc 15016. Ordering property for the input to 𝐷. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem2.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ruclem2 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem2
StepHypRef Expression
1 ruclem1.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
21leidd 10632 . . . 4 (𝜑𝐴𝐴)
3 ruclem1.4 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
41, 3readdcld 10107 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54rehalfcld 11317 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
65, 3readdcld 10107 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
76rehalfcld 11317 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
8 ruclem2.8 . . . . . . 7 (𝜑𝐴 < 𝐵)
9 avglt1 11308 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
101, 3, 9syl2anc 694 . . . . . . 7 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
118, 10mpbid 222 . . . . . 6 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
12 avglt2 11309 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
131, 3, 12syl2anc 694 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
148, 13mpbid 222 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
15 avglt1 11308 . . . . . . . 8 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
165, 3, 15syl2anc 694 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1714, 16mpbid 222 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
181, 5, 7, 11, 17lttrd 10236 . . . . 5 (𝜑𝐴 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
191, 7, 18ltled 10223 . . . 4 (𝜑𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
20 breq2 4689 . . . . 5 (𝐴 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴𝐴𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
21 breq2 4689 . . . . 5 (((((𝐴 + 𝐵) / 2) + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ↔ 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
2220, 21ifboth 4157 . . . 4 ((𝐴𝐴𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
232, 19, 22syl2anc 694 . . 3 (𝜑𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
24 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
25 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
26 ruclem1.5 . . . . 5 (𝜑𝑀 ∈ ℝ)
27 ruclem1.6 . . . . 5 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
28 ruclem1.7 . . . . 5 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
2924, 25, 1, 3, 26, 27, 28ruclem1 15004 . . . 4 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
3029simp2d 1094 . . 3 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
3123, 30breqtrrd 4713 . 2 (𝜑𝐴𝑋)
32 iftrue 4125 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = 𝐴)
33 iftrue 4125 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = ((𝐴 + 𝐵) / 2))
3432, 33breq12d 4698 . . . . 5 (((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ 𝐴 < ((𝐴 + 𝐵) / 2)))
3511, 34syl5ibrcom 237 . . . 4 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
36 avglt2 11309 . . . . . . 7 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
375, 3, 36syl2anc 694 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
3814, 37mpbid 222 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵)
39 iffalse 4128 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
40 iffalse 4128 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = 𝐵)
4139, 40breq12d 4698 . . . . 5 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
4238, 41syl5ibrcom 237 . . . 4 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
4335, 42pm2.61d 170 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4429simp3d 1095 . . 3 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4543, 30, 443brtr4d 4717 . 2 (𝜑𝑋 < 𝑌)
465, 3, 14ltled 10223 . . . 4 (𝜑 → ((𝐴 + 𝐵) / 2) ≤ 𝐵)
473leidd 10632 . . . 4 (𝜑𝐵𝐵)
48 breq1 4688 . . . . 5 (((𝐴 + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (((𝐴 + 𝐵) / 2) ≤ 𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
49 breq1 4688 . . . . 5 (𝐵 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (𝐵𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
5048, 49ifboth 4157 . . . 4 ((((𝐴 + 𝐵) / 2) ≤ 𝐵𝐵𝐵) → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5146, 47, 50syl2anc 694 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5244, 51eqbrtrd 4707 . 2 (𝜑𝑌𝐵)
5331, 45, 523jca 1261 1 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1054   = wceq 1523  wcel 2030  csb 3566  ifcif 4119  cop 4216   class class class wbr 4685   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  1st c1st 7208  2nd c2nd 7209  cr 9973   + caddc 9977   < clt 10112  cle 10113   / cdiv 10722  cn 11058  2c2 11108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-2 11117
This theorem is referenced by:  ruclem8  15010  ruclem9  15011
  Copyright terms: Public domain W3C validator