![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruclem13 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15192. There is no function that maps ℕ onto ℝ. (Use nex 1880 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
ruclem13 | ⊢ ¬ 𝐹:ℕ–onto→ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 6281 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → ran 𝐹 = ℝ) | |
2 | 1 | difeq2d 3872 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = (ℝ ∖ ℝ)) |
3 | difid 4092 | . . 3 ⊢ (ℝ ∖ ℝ) = ∅ | |
4 | 2, 3 | syl6eq 2811 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = ∅) |
5 | reex 10240 | . . . . . 6 ⊢ ℝ ∈ V | |
6 | 5, 5 | xpex 7129 | . . . . 5 ⊢ (ℝ × ℝ) ∈ V |
7 | 6, 5 | mpt2ex 7417 | . . . 4 ⊢ (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) ∈ V |
8 | 7 | isseti 3350 | . . 3 ⊢ ∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) |
9 | fof 6278 | . . . . . . . 8 ⊢ (𝐹:ℕ–onto→ℝ → 𝐹:ℕ⟶ℝ) | |
10 | 9 | adantr 472 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝐹:ℕ⟶ℝ) |
11 | simpr 479 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
12 | eqid 2761 | . . . . . . 7 ⊢ ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
13 | eqid 2761 | . . . . . . 7 ⊢ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) = seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) | |
14 | eqid 2761 | . . . . . . 7 ⊢ sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) = sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) | |
15 | 10, 11, 12, 13, 14 | ruclem12 15190 | . . . . . 6 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹)) |
16 | n0i 4064 | . . . . . 6 ⊢ (sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹) → ¬ (ℝ ∖ ran 𝐹) = ∅) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → ¬ (ℝ ∖ ran 𝐹) = ∅) |
18 | 17 | ex 449 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → (𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
19 | 18 | exlimdv 2011 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
20 | 8, 19 | mpi 20 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → ¬ (ℝ ∖ ran 𝐹) = ∅) |
21 | 4, 20 | pm2.65i 185 | 1 ⊢ ¬ 𝐹:ℕ–onto→ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2140 ⦋csb 3675 ∖ cdif 3713 ∪ cun 3714 ∅c0 4059 ifcif 4231 {csn 4322 〈cop 4328 class class class wbr 4805 × cxp 5265 ran crn 5268 ∘ ccom 5271 ⟶wf 6046 –onto→wfo 6048 ‘cfv 6050 (class class class)co 6815 ↦ cmpt2 6817 1st c1st 7333 2nd c2nd 7334 supcsup 8514 ℝcr 10148 0cc0 10149 1c1 10150 + caddc 10152 < clt 10287 / cdiv 10897 ℕcn 11233 2c2 11283 seqcseq 13016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-sup 8516 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-seq 13017 |
This theorem is referenced by: ruc 15192 |
Copyright terms: Public domain | W3C validator |