![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rtrclreclem1 | Structured version Visualization version GIF version |
Description: The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) |
Ref | Expression |
---|---|
rtrclreclem.1 | ⊢ (𝜑 → Rel 𝑅) |
rtrclreclem.2 | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
rtrclreclem1 | ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 11519 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
2 | ssid 3765 | . . . . . 6 ⊢ ( I ↾ ∪ ∪ 𝑅) ⊆ ( I ↾ ∪ ∪ 𝑅) | |
3 | rtrclreclem.1 | . . . . . . 7 ⊢ (𝜑 → Rel 𝑅) | |
4 | rtrclreclem.2 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ V) | |
5 | 3, 4 | relexp0d 13983 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
6 | 2, 5 | syl5sseqr 3795 | . . . . 5 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) |
7 | oveq2 6822 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟0)) | |
8 | 7 | sseq2d 3774 | . . . . . 6 ⊢ (𝑛 = 0 → (( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0))) |
9 | 8 | rspcev 3449 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
10 | 1, 6, 9 | sylancr 698 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
11 | ssiun 4714 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
13 | nn0ex 11510 | . . . . 5 ⊢ ℕ0 ∈ V | |
14 | ovex 6842 | . . . . 5 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
15 | 13, 14 | iunex 7313 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
16 | oveq1 6821 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
17 | 16 | iuneq2d 4699 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
18 | eqid 2760 | . . . . 5 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
19 | 17, 18 | fvmptg 6443 | . . . 4 ⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
20 | 4, 15, 19 | sylancl 697 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
21 | 12, 20 | sseqtr4d 3783 | . 2 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
22 | df-rtrclrec 14015 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
23 | fveq1 6352 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
24 | 23 | sseq2d 3774 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
25 | 24 | imbi2d 329 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
26 | 22, 25 | ax-mp 5 | . 2 ⊢ ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
27 | 21, 26 | mpbir 221 | 1 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 Vcvv 3340 ⊆ wss 3715 ∪ cuni 4588 ∪ ciun 4672 ↦ cmpt 4881 I cid 5173 ↾ cres 5268 Rel wrel 5271 ‘cfv 6049 (class class class)co 6814 0cc0 10148 ℕ0cn0 11504 ↑𝑟crelexp 13979 t*reccrtrcl 14014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-i2m1 10216 ax-1ne0 10217 ax-rrecex 10220 ax-cnre 10221 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-nn 11233 df-n0 11505 df-relexp 13980 df-rtrclrec 14015 |
This theorem is referenced by: dfrtrcl2 14021 |
Copyright terms: Public domain | W3C validator |