MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspval Structured version   Visualization version   GIF version

Theorem rspval 19415
Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
rspval (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))

Proof of Theorem rspval
StepHypRef Expression
1 df-rsp 19397 . . 3 RSpan = (LSpan ∘ ringLMod)
21fveq1i 6354 . 2 (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊)
3 00lsp 19203 . . 3 ∅ = (LSpan‘∅)
4 rlmfn 19412 . . . 4 ringLMod Fn V
5 fnfun 6149 . . . 4 (ringLMod Fn V → Fun ringLMod)
64, 5ax-mp 5 . . 3 Fun ringLMod
73, 6fvco4i 6439 . 2 ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊))
82, 7eqtri 2782 1 (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  Vcvv 3340  ccom 5270  Fun wfun 6043   Fn wfn 6044  cfv 6049  LSpanclspn 19193  ringLModcrglmod 19391  RSpancrsp 19393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-slot 16083  df-base 16085  df-lss 19155  df-lsp 19194  df-rgmod 19395  df-rsp 19397
This theorem is referenced by:  rspcl  19444  rspssid  19445  rsp0  19447  rspssp  19448  mrcrsp  19449  lidlrsppropd  19452  rspsn  19476  islnr2  38204
  Copyright terms: Public domain W3C validator