![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcsbela | Structured version Visualization version GIF version |
Description: Special case related to rspsbc 3551. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
Ref | Expression |
---|---|
rspcsbela | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc 3551 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → [𝐴 / 𝑥]𝐶 ∈ 𝐷)) | |
2 | sbcel1g 4020 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ∈ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) | |
3 | 1, 2 | sylibd 229 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷)) |
4 | 3 | imp 444 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 [wsbc 3468 ⦋csb 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-nul 3949 |
This theorem is referenced by: el2mpt2csbcl 7295 mptnn0fsupp 12837 mptnn0fsuppr 12839 fsumzcl2 14513 fsummsnunz 14527 fsumsplitsnun 14528 fsummsnunzOLD 14529 fsumsplitsnunOLD 14530 modfsummodslem1 14568 fprodmodd 14772 sumeven 15157 sumodd 15158 gsummpt1n0 18410 gsummptnn0fz 18428 telgsumfzslem 18431 telgsumfzs 18432 telgsums 18436 mptscmfsupp0 18976 coe1fzgsumdlem 19719 gsummoncoe1 19722 evl1gsumdlem 19768 madugsum 20497 iunmbl2 23371 gsumvsca1 29910 gsumvsca2 29911 esum2dlem 30282 esumiun 30284 iblsplitf 40504 fsummsndifre 41667 fsumsplitsndif 41668 fsummmodsndifre 41669 fsummmodsnunz 41670 |
Copyright terms: Public domain | W3C validator |