![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspceov | Structured version Visualization version GIF version |
Description: A frequently used special case of rspc2ev 3472 for operation values. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
rspceov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6799 | . . 3 ⊢ (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦)) | |
2 | 1 | eqeq2d 2780 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦))) |
3 | oveq2 6800 | . . 3 ⊢ (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷)) | |
4 | 3 | eqeq2d 2780 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷))) |
5 | 2, 4 | rspc2ev 3472 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (𝐶𝐹𝐷)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = (𝑥𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ∃wrex 3061 (class class class)co 6792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 |
This theorem is referenced by: iunfictbso 9136 genpprecl 10024 elz2 11595 zaddcl 11618 znq 11994 qaddcl 12006 qmulcl 12008 qreccl 12010 xpsff1o 16435 mndpfo 17521 gafo 17935 lsmelvalix 18262 lsmelvalmi 18273 evthicc2 23447 i1fadd 23681 i1fmul 23682 2clwwlk2clwwlk 27532 isgrpoi 27686 shscli 28510 shsva 28513 shunssi 28561 pjpjhth 28618 spanunsni 28772 pjjsi 28893 ofrn2 29776 pstmfval 30273 ismblfin 33776 itg2addnc 33789 blbnd 33911 isgrpda 34079 sbgoldbalt 42187 |
Copyright terms: Public domain | W3C validator |