![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspceaov | Structured version Visualization version GIF version |
Description: A frequently used special case of rspc2ev 3455 for operation values, analogous to rspceov 6847. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
rspceaov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2753 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐹 = 𝐹) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) | |
3 | eqidd 2753 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑦 = 𝑦) | |
4 | 1, 2, 3 | aoveq123d 41756 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝐹𝑦)) = ((𝐶𝐹𝑦)) ) |
5 | 4 | eqeq2d 2762 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = ((𝑥𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝑦)) )) |
6 | eqidd 2753 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐹 = 𝐹) | |
7 | eqidd 2753 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐶 = 𝐶) | |
8 | id 22 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝑦 = 𝐷) | |
9 | 6, 7, 8 | aoveq123d 41756 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝐹𝑦)) = ((𝐶𝐹𝐷)) ) |
10 | 9 | eqeq2d 2762 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = ((𝐶𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝐷)) )) |
11 | 5, 10 | rspc2ev 3455 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∃wrex 3043 ((caov 41693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-res 5270 df-iota 6004 df-fun 6043 df-fv 6049 df-dfat 41694 df-afv 41695 df-aov 41696 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |