![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcdvinvd | Structured version Visualization version GIF version |
Description: If something is true for all then it's true for some class. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
rspcdvinvd.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
rspcdvinvd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdvinvd.3 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
rspcdvinvd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdvinvd.3 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | |
2 | rspcdvinvd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | rspcdvinvd.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | rspcdv 3343 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 |
This theorem is referenced by: imo72b2 38792 |
Copyright terms: Public domain | W3C validator |