Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspc2gv Structured version   Visualization version   GIF version

Theorem rspc2gv 3352
 Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021.)
Hypothesis
Ref Expression
rspc2gv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
rspc2gv ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑉𝑦𝑊 𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rspc2gv
StepHypRef Expression
1 df-ral 2946 . 2 (∀𝑥𝑉𝑦𝑊 𝜑 ↔ ∀𝑥(𝑥𝑉 → ∀𝑦𝑊 𝜑))
2 df-ral 2946 . . . . 5 (∀𝑦𝑊 𝜑 ↔ ∀𝑦(𝑦𝑊𝜑))
32imbi2i 325 . . . 4 ((𝑥𝑉 → ∀𝑦𝑊 𝜑) ↔ (𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)))
43albii 1787 . . 3 (∀𝑥(𝑥𝑉 → ∀𝑦𝑊 𝜑) ↔ ∀𝑥(𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)))
5 19.21v 1908 . . . . . 6 (∀𝑦(𝑥𝑉 → (𝑦𝑊𝜑)) ↔ (𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)))
65bicomi 214 . . . . 5 ((𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)) ↔ ∀𝑦(𝑥𝑉 → (𝑦𝑊𝜑)))
76albii 1787 . . . 4 (∀𝑥(𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)) ↔ ∀𝑥𝑦(𝑥𝑉 → (𝑦𝑊𝜑)))
8 impexp 461 . . . . . . 7 (((𝑥𝑉𝑦𝑊) → 𝜑) ↔ (𝑥𝑉 → (𝑦𝑊𝜑)))
9 eleq1 2718 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝑉𝐴𝑉))
10 eleq1 2718 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝑊𝐵𝑊))
119, 10bi2anan9 935 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑉𝑦𝑊) ↔ (𝐴𝑉𝐵𝑊)))
12 rspc2gv.1 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
1311, 12imbi12d 333 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝑉𝑦𝑊) → 𝜑) ↔ ((𝐴𝑉𝐵𝑊) → 𝜓)))
148, 13syl5bbr 274 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑉 → (𝑦𝑊𝜑)) ↔ ((𝐴𝑉𝐵𝑊) → 𝜓)))
1514spc2gv 3327 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦(𝑥𝑉 → (𝑦𝑊𝜑)) → ((𝐴𝑉𝐵𝑊) → 𝜓)))
1615pm2.43a 54 . . . 4 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦(𝑥𝑉 → (𝑦𝑊𝜑)) → 𝜓))
177, 16syl5bi 232 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)) → 𝜓))
184, 17syl5bi 232 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥𝑉 → ∀𝑦𝑊 𝜑) → 𝜓))
191, 18syl5bi 232 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑉𝑦𝑊 𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1521   = wceq 1523   ∈ wcel 2030  ∀wral 2941 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-ral 2946  df-v 3233 This theorem is referenced by:  eulplig  27467
 Copyright terms: Public domain W3C validator