![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
2 | 1 | rspcev 3340 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
3 | 2 | anim2i 592 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
4 | 3 | 3impb 1279 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
6 | 5 | rexbidv 3081 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
7 | 6 | rspcev 3340 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-v 3233 |
This theorem is referenced by: rspc3ev 3357 opelxp 5180 f1prex 6579 rspceov 6732 erov 7887 ralxpmap 7949 2dom 8070 elfiun 8377 dffi3 8378 ixpiunwdom 8537 1re 10077 hashdmpropge2 13303 wrdl2exs2 13736 ello12r 14292 ello1d 14298 elo12r 14303 o1lo1 14312 addcn2 14368 mulcn2 14370 bezoutlem3 15305 bezout 15307 pythagtriplem18 15584 pczpre 15599 pcdiv 15604 4sqlem3 15701 4sqlem4 15703 4sqlem12 15707 vdwlem1 15732 vdwlem6 15737 vdwlem8 15739 vdwlem12 15743 vdwlem13 15744 0ram 15771 ramz2 15775 sgrp2rid2ex 17461 pmtr3ncom 17941 psgnunilem1 17959 irredn0 18749 isnzr2 19311 hausnei2 21205 cnhaus 21206 dishaus 21234 ordthauslem 21235 txuni2 21416 xkoopn 21440 txopn 21453 txdis 21483 txdis1cn 21486 pthaus 21489 txhaus 21498 tx1stc 21501 xkohaus 21504 regr1lem 21590 qustgplem 21971 methaus 22372 met2ndci 22374 metnrmlem3 22711 elplyr 24002 aaliou2b 24141 aaliou3lem9 24150 2sqlem2 25188 2sqlem8 25196 2sqlem11 25199 2sqb 25202 pntibnd 25327 legov 25525 iscgrad 25748 f1otrge 25797 axsegconlem1 25842 axsegcon 25852 axpaschlem 25865 axlowdimlem6 25872 axlowdim1 25884 axlowdim2 25885 axeuclidlem 25887 structgrssvtxlemOLD 25960 umgrvad2edg 26150 wwlksnwwlksnon 26878 wwlksnwwlksnonOLD 26880 upgr4cycl4dv4e 27163 3cyclfrgrrn1 27265 4cycl2vnunb 27270 br8d 29548 lt2addrd 29644 xlt2addrd 29651 xrnarchi 29866 txomap 30029 tpr2rico 30086 qqhval2 30154 elsx 30385 isanmbfm 30446 br2base 30459 dya2iocnrect 30471 connpconn 31343 br8 31772 br4 31774 fprb 31795 brsegle 32340 hilbert1.1 32386 nn0prpwlem 32442 knoppndvlem21 32648 poimirlem1 33540 itg2addnclem3 33593 cntotbnd 33725 smprngopr 33981 3dim2 35072 llni2 35116 lvoli3 35181 lvoli2 35185 islinei 35344 psubspi2N 35352 elpaddri 35406 eldioph2lem1 37640 diophin 37653 fphpdo 37698 irrapxlem3 37705 irrapxlem4 37706 pellexlem6 37715 pell1234qrreccl 37735 pell1234qrmulcl 37736 pell1234qrdich 37742 pell1qr1 37752 pellqrexplicit 37758 rmxycomplete 37799 dgraalem 38032 clsk3nimkb 38655 fourierdlem64 40705 rspceaov 41598 6gbe 41984 7gbow 41985 8gbe 41986 9gbo 41987 11gbo 41988 prelspr 42061 modn0mul 42640 elbigo2r 42672 |
Copyright terms: Public domain | W3C validator |