![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2946 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2793 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1865 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2718 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 333 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 3319 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | syl5bi 232 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 |
This theorem is referenced by: rspcv 3336 rspc2 3351 disjxiun 4681 disjxiunOLD 4682 pofun 5080 fmptcof 6437 fliftfuns 6604 ofmpteq 6958 qliftfuns 7877 xpf1o 8163 iunfi 8295 iundom2g 9400 lble 11013 rlimcld2 14353 sumeq2ii 14467 summolem3 14489 zsum 14493 fsum 14495 fsumf1o 14498 sumss2 14501 fsumcvg2 14502 fsumadd 14514 isummulc2 14537 fsum2dlem 14545 fsumcom2 14549 fsumcom2OLD 14550 fsumshftm 14557 fsum0diag2 14559 fsummulc2 14560 fsum00 14574 fsumabs 14577 fsumrelem 14583 fsumrlim 14587 fsumo1 14588 o1fsum 14589 fsumiun 14597 isumshft 14615 prodeq2ii 14687 prodmolem3 14707 zprod 14711 fprod 14715 fprodf1o 14720 prodss 14721 fprodser 14723 fprodmul 14734 fproddiv 14735 fprodm1s 14744 fprodp1s 14745 fprodabs 14748 fprod2dlem 14754 fprodcom2 14758 fprodcom2OLD 14759 fprodefsum 14869 sumeven 15157 sumodd 15158 pcmpt 15643 invfuc 16681 dprd2d2 18489 txcnp 21471 ptcnplem 21472 prdsdsf 22219 prdsxmet 22221 fsumcn 22720 ovolfiniun 23315 ovoliunnul 23321 volfiniun 23361 iunmbl 23367 limciun 23703 dvfsumle 23829 dvfsumabs 23831 dvfsumlem1 23834 dvfsumlem3 23836 dvfsumlem4 23837 dvfsumrlim 23839 dvfsumrlim2 23840 dvfsum2 23842 itgsubst 23857 fsumvma 24983 dchrisumlema 25222 dchrisumlem2 25224 dchrisumlem3 25225 rspc2vd 27245 chirred 29382 fsumiunle 29703 sigapildsyslem 30352 voliune 30420 volfiniune 30421 tfisg 31840 nosupbnd1 31985 ptrest 33538 poimirlem25 33564 poimirlem26 33565 mzpsubst 37628 rabdiophlem2 37683 etransclem48 40817 sge0iunmpt 40953 |
Copyright terms: Public domain | W3C validator |