Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxtopnfi Structured version   Visualization version   GIF version

Theorem rrxtopnfi 41023
 Description: The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypothesis
Ref Expression
rrxtopnfi.1 (𝜑𝐼 ∈ Fin)
Assertion
Ref Expression
rrxtopnfi (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑘   𝜑,𝑓,𝑔,𝑘

Proof of Theorem rrxtopnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxtopnfi.1 . . 3 (𝜑𝐼 ∈ Fin)
21rrxtopn 41018 . 2 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
3 eqid 2771 . . . . 5 (ℝ^‘𝐼) = (ℝ^‘𝐼)
4 eqid 2771 . . . . 5 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
51, 3, 4rrxbasefi 41020 . . . 4 (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑𝑚 𝐼))
65adantr 466 . . . 4 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑𝑚 𝐼))
7 simpl 468 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝜑)
8 simprl 754 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
9 simpr 471 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
109, 6eleqtrd 2852 . . . . . 6 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
118, 10syldan 579 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
12 simprr 756 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
13 simpr 471 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
145adantr 466 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑𝑚 𝐼))
1513, 14eleqtrd 2852 . . . . . 6 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (ℝ ↑𝑚 𝐼))
1612, 15syldan 579 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (ℝ ↑𝑚 𝐼))
17 elmapi 8031 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑𝑚 𝐼) → 𝑓:𝐼⟶ℝ)
1817adantr 466 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → 𝑓:𝐼⟶ℝ)
1918ffvelrnda 6502 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
20 elmapi 8031 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑𝑚 𝐼) → 𝑔:𝐼⟶ℝ)
2120adantl 467 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → 𝑔:𝐼⟶ℝ)
2221ffvelrnda 6502 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
2319, 22resubcld 10660 . . . . . . . . . . 11 (((𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
2423resqcld 13242 . . . . . . . . . 10 (((𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℝ)
25 eqid 2771 . . . . . . . . . 10 (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))
2624, 25fmptd 6527 . . . . . . . . 9 ((𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
27263adant1 1124 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
2813ad2ant1 1127 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → 𝐼 ∈ Fin)
29 0red 10243 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → 0 ∈ ℝ)
3027, 28, 29fidmfisupp 39909 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0)
31 regsumsupp 20185 . . . . . . . 8 (((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0 ∧ 𝐼 ∈ Fin) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
3227, 30, 28, 31syl3anc 1476 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
33 ax-resscn 10195 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑𝑚 𝐼) → ℝ ⊆ ℂ)
3517, 34fssd 6197 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑𝑚 𝐼) → 𝑓:𝐼⟶ℂ)
36353ad2ant2 1128 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → 𝑓:𝐼⟶ℂ)
3736ffvelrnda 6502 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
3833a1i 11 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑𝑚 𝐼) → ℝ ⊆ ℂ)
3920, 38fssd 6197 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑𝑚 𝐼) → 𝑔:𝐼⟶ℂ)
40393ad2ant3 1129 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → 𝑔:𝐼⟶ℂ)
4140ffvelrnda 6502 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℂ)
4237, 41subcld 10594 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℂ)
4342sqcld 13213 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℂ)
4443, 25fmptd 6527 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℂ)
4528, 44fsumsupp0 40328 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
46 eqidd 2772 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
47 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑓𝑥) = (𝑓𝑘))
48 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
4947, 48oveq12d 6811 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑘) − (𝑔𝑘)))
5049oveq1d 6808 . . . . . . . . . 10 (𝑥 = 𝑘 → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5150adantl 467 . . . . . . . . 9 ((((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
52 simpr 471 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑘𝐼) → 𝑘𝐼)
53 ovexd 6825 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑘𝐼) → (((𝑓𝑘) − (𝑔𝑘))↑2) ∈ V)
5446, 51, 52, 53fvmptd 6430 . . . . . . . 8 (((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5554sumeq2dv 14641 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5632, 45, 553eqtrd 2809 . . . . . 6 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5756fveq2d 6336 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝐼)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
587, 11, 16, 57syl3anc 1476 . . . 4 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
595, 6, 58mpt2eq123dva 6863 . . 3 (𝜑 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
6059fveq2d 6336 . 2 (𝜑 → (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
612, 60eqtrd 2805 1 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  Vcvv 3351   ⊆ wss 3723   class class class wbr 4786   ↦ cmpt 4863  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793   ↦ cmpt2 6795   supp csupp 7446   ↑𝑚 cmap 8009  Fincfn 8109   finSupp cfsupp 8431  ℂcc 10136  ℝcr 10137  0cc0 10138   − cmin 10468  2c2 11272  ↑cexp 13067  √csqrt 14181  Σcsu 14624  Basecbs 16064  TopOpenctopn 16290   Σg cgsu 16309  MetOpencmopn 19951  ℝfldcrefld 20167  ℝ^crrx 23390 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-prds 16316  df-pws 16318  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925  df-drng 18959  df-field 18960  df-subrg 18988  df-staf 19055  df-srng 19056  df-lmod 19075  df-lss 19143  df-sra 19387  df-rgmod 19388  df-psmet 19953  df-xmet 19954  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-refld 20168  df-dsmm 20293  df-frlm 20308  df-top 20919  df-topon 20936  df-bases 20971  df-nm 22607  df-tng 22609  df-tch 23188  df-rrx 23392 This theorem is referenced by:  qndenserrnopnlem  41034  ioorrnopnlem  41041
 Copyright terms: Public domain W3C validator