Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsnicc Structured version   Visualization version   GIF version

Theorem rrxsnicc 41034
Description: A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
rrxsnicc.1 (𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))
Assertion
Ref Expression
rrxsnicc (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋   𝜑,𝑘

Proof of Theorem rrxsnicc
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfn 8072 . . . . . 6 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓 Fn 𝑋)
21adantl 467 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 Fn 𝑋)
3 rrxsnicc.1 . . . . . . 7 (𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))
4 elmapfn 8036 . . . . . . 7 (𝐴 ∈ (ℝ ↑𝑚 𝑋) → 𝐴 Fn 𝑋)
53, 4syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑋)
65adantr 466 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝐴 Fn 𝑋)
7 simpll 750 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝜑)
8 fveq2 6333 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
98, 8oveq12d 6814 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐴𝑘)[,](𝐴𝑘)) = ((𝐴𝑗)[,](𝐴𝑗)))
109cbvixpv 8084 . . . . . . . . 9 X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))
1110eleq2i 2842 . . . . . . . 8 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1211biimpi 206 . . . . . . 7 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1312ad2antlr 706 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
14 simpr 471 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑗𝑋)
15 elmapi 8035 . . . . . . . . . . . . 13 (𝐴 ∈ (ℝ ↑𝑚 𝑋) → 𝐴:𝑋⟶ℝ)
163, 15syl 17 . . . . . . . . . . . 12 (𝜑𝐴:𝑋⟶ℝ)
1716ffvelrnda 6504 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1817adantlr 694 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1918, 18iccssred 40245 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → ((𝐴𝑗)[,](𝐴𝑗)) ⊆ ℝ)
20 fvixp2 39907 . . . . . . . . . 10 ((𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2120adantll 693 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2219, 21sseldd 3753 . . . . . . . 8 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ)
2322rexrd 10295 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ*)
2418rexrd 10295 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ*)
25 iccleub 12434 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝑓𝑗) ≤ (𝐴𝑗))
2624, 24, 21, 25syl3anc 1476 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ≤ (𝐴𝑗))
27 iccgelb 12435 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝐴𝑗) ≤ (𝑓𝑗))
2824, 24, 21, 27syl3anc 1476 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ≤ (𝑓𝑗))
2923, 24, 26, 28xrletrid 12191 . . . . . 6 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
307, 13, 14, 29syl21anc 1475 . . . . 5 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
312, 6, 30eqfnfvd 6459 . . . 4 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 = 𝐴)
32 velsn 4333 . . . . . 6 (𝑓 ∈ {𝐴} ↔ 𝑓 = 𝐴)
3332bicomi 214 . . . . 5 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3433biimpi 206 . . . 4 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3531, 34syl 17 . . 3 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 ∈ {𝐴})
3635ssd 39773 . 2 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ⊆ {𝐴})
373elexd 3366 . . . . 5 (𝜑𝐴 ∈ V)
3816ffvelrnda 6504 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3938leidd 10800 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
4038, 38, 38, 39, 39eliccd 40244 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4140ralrimiva 3115 . . . . 5 (𝜑 → ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4237, 5, 413jca 1122 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
43 elixp2 8070 . . . 4 (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
4442, 43sylibr 224 . . 3 (𝜑𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
45 snssg 4451 . . . 4 (𝐴 ∈ (ℝ ↑𝑚 𝑋) → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
463, 45syl 17 . . 3 (𝜑 → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
4744, 46mpbid 222 . 2 (𝜑 → {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
4836, 47eqssd 3769 1 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  wss 3723  {csn 4317   class class class wbr 4787   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6796  𝑚 cmap 8013  Xcixp 8066  cr 10141  *cxr 10279  cle 10281  [,]cicc 12383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-pre-lttri 10216  ax-pre-lttrn 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-map 8015  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-icc 12387
This theorem is referenced by:  snvonmbl  41417  vonsn  41422
  Copyright terms: Public domain W3C validator