MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxnm Structured version   Visualization version   GIF version

Theorem rrxnm 23398
Description: The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxnm (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,𝐼,𝑥   𝑓,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓)

Proof of Theorem rrxnm
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recrng 20184 . . . . 5 fld ∈ *-Ring
2 srngring 19062 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
31, 2ax-mp 5 . . . 4 fld ∈ Ring
4 eqid 2771 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
54frlmlmod 20310 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
63, 5mpan 670 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
7 lmodgrp 19080 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
8 eqid 2771 . . . 4 (toℂHil‘(ℝfld freeLMod 𝐼)) = (toℂHil‘(ℝfld freeLMod 𝐼))
9 eqid 2771 . . . 4 (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂHil‘(ℝfld freeLMod 𝐼)))
10 eqid 2771 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
11 eqid 2771 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
128, 9, 10, 11tchnmfval 23246 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
136, 7, 123syl 18 . 2 (𝐼𝑉 → (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
14 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
1514rrxval 23394 . . 3 (𝐼𝑉𝐻 = (toℂHil‘(ℝfld freeLMod 𝐼)))
1615fveq2d 6336 . 2 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))))
1715fveq2d 6336 . . . 4 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂHil‘(ℝfld freeLMod 𝐼))))
18 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
198, 10tchbas 23237 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂHil‘(ℝfld freeLMod 𝐼)))
2017, 18, 193eqtr4g 2830 . . 3 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2114, 18rrxbase 23395 . . . . . . . 8 (𝐼𝑉𝐵 = {𝑓 ∈ (ℝ ↑𝑚 𝐼) ∣ 𝑓 finSupp 0})
22 ssrab2 3836 . . . . . . . 8 {𝑓 ∈ (ℝ ↑𝑚 𝐼) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑𝑚 𝐼)
2321, 22syl6eqss 3804 . . . . . . 7 (𝐼𝑉𝐵 ⊆ (ℝ ↑𝑚 𝐼))
2423sselda 3752 . . . . . 6 ((𝐼𝑉𝑓𝐵) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
2515fveq2d 6336 . . . . . . . . 9 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂHil‘(ℝfld freeLMod 𝐼))))
2614, 18rrxip 23397 . . . . . . . . 9 (𝐼𝑉 → ( ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
278, 11tchip 23243 . . . . . . . . . 10 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂHil‘(ℝfld freeLMod 𝐼)))
2827a1i 11 . . . . . . . . 9 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂHil‘(ℝfld freeLMod 𝐼))))
2925, 26, 283eqtr4rd 2816 . . . . . . . 8 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
3029adantr 466 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
31 simprl 754 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → = 𝑓)
3231fveq1d 6334 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥) = (𝑓𝑥))
33 simprr 756 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → 𝑔 = 𝑓)
3433fveq1d 6334 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑔𝑥) = (𝑓𝑥))
3532, 34oveq12d 6811 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
3635adantr 466 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
37 elmapi 8031 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℝ ↑𝑚 𝐼) → 𝑓:𝐼⟶ℝ)
3837adantl 467 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → 𝑓:𝐼⟶ℝ)
3938ffvelrnda 6502 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
4039recnd 10270 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4140adantlr 694 . . . . . . . . . . 11 ((((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4241sqvald 13212 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑓𝑥)↑2) = ((𝑓𝑥) · (𝑓𝑥)))
4336, 42eqtr4d 2808 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥)↑2))
4443mpteq2dva 4878 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))
4544oveq2d 6809 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
46 simpr 471 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
47 ovexd 6825 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) ∈ V)
4830, 45, 46, 46, 47ovmpt2d 6935 . . . . . 6 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
4924, 48syldan 579 . . . . 5 ((𝐼𝑉𝑓𝐵) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
5049eqcomd 2777 . . . 4 ((𝐼𝑉𝑓𝐵) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) = (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
5150fveq2d 6336 . . 3 ((𝐼𝑉𝑓𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))) = (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓)))
5220, 51mpteq12dva 4866 . 2 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
5313, 16, 523eqtr4rd 2816 1 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  {crab 3065  Vcvv 3351   class class class wbr 4786  cmpt 4863  wf 6027  cfv 6031  (class class class)co 6793  cmpt2 6795  𝑚 cmap 8009   finSupp cfsupp 8431  cc 10136  cr 10137  0cc0 10138   · cmul 10143  2c2 11272  cexp 13067  csqrt 14181  Basecbs 16064  ·𝑖cip 16154   Σg cgsu 16309  Grpcgrp 17630  Ringcrg 18755  *-Ringcsr 19054  LModclmod 19073  fldcrefld 20167   freeLMod cfrlm 20307  normcnm 22601  toℂHilctch 23186  ℝ^crrx 23390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-rp 12036  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-0g 16310  df-prds 16316  df-pws 16318  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-ghm 17866  df-cmn 18402  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925  df-drng 18959  df-field 18960  df-subrg 18988  df-staf 19055  df-srng 19056  df-lmod 19075  df-lss 19143  df-sra 19387  df-rgmod 19388  df-cnfld 19962  df-refld 20168  df-dsmm 20293  df-frlm 20308  df-nm 22607  df-tng 22609  df-tch 23188  df-rrx 23392
This theorem is referenced by:  rrxds  23400
  Copyright terms: Public domain W3C validator