MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmvallem Structured version   Visualization version   GIF version

Theorem rrxmvallem 23405
Description: Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypothesis
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
Assertion
Ref Expression
rrxmvallem ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑋()

Proof of Theorem rrxmvallem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 746 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = 0)
2 0cn 10233 . . . . . . . . . 10 0 ∈ ℂ
31, 2syl6eqel 2857 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
4 simprr 748 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐺𝑥) = 0)
51, 4eqtr4d 2807 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = (𝐺𝑥))
63, 5subeq0bd 10657 . . . . . . . 8 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → ((𝐹𝑥) − (𝐺𝑥)) = 0)
76sq0id 13163 . . . . . . 7 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0)
87ex 397 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
9 ioran 912 . . . . . . . 8 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ (¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0))
10 nne 2946 . . . . . . . . 9 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0)
11 nne 2946 . . . . . . . . 9 (¬ (𝐺𝑥) ≠ 0 ↔ (𝐺𝑥) = 0)
1210, 11anbi12i 604 . . . . . . . 8 ((¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
139, 12bitri 264 . . . . . . 7 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
1413a1i 11 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)))
15 eqidd 2771 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)))
16 simpr 471 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1716fveq2d 6336 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐹𝑘) = (𝐹𝑥))
1816fveq2d 6336 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐺𝑘) = (𝐺𝑥))
1917, 18oveq12d 6810 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝑥) − (𝐺𝑥)))
2019oveq1d 6807 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
21 simpr 471 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → 𝑥𝐼)
22 ovex 6822 . . . . . . . . . . 11 (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V
2322a1i 11 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V)
2415, 20, 21, 23fvmptd 6430 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) = (((𝐹𝑥) − (𝐺𝑥))↑2))
2524neeq1d 3001 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0))
2625bicomd 213 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0 ↔ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2726necon1bbid 2981 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
288, 14, 273imtr4d 283 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) → ¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2928con4d 115 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 → ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)))
3029ss2rabdv 3830 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)})
31 unrab 4044 . . 3 ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}) = {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)}
3230, 31syl6sseqr 3799 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
33 simp1 1129 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
34 ovex 6822 . . . . 5 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V
35 eqid 2770 . . . . 5 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))
3634, 35fnmpti 6162 . . . 4 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼
37 suppvalfn 7452 . . . 4 (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3836, 2, 37mp3an13 1562 . . 3 (𝐼𝑉 → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3933, 38syl 17 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
40 elrabi 3508 . . . . . . 7 (𝐹 ∈ { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} → 𝐹 ∈ (ℝ ↑𝑚 𝐼))
41 rrxmval.1 . . . . . . 7 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
4240, 41eleq2s 2867 . . . . . 6 (𝐹𝑋𝐹 ∈ (ℝ ↑𝑚 𝐼))
43 elmapi 8030 . . . . . 6 (𝐹 ∈ (ℝ ↑𝑚 𝐼) → 𝐹:𝐼⟶ℝ)
44 ffn 6185 . . . . . 6 (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼)
4542, 43, 443syl 18 . . . . 5 (𝐹𝑋𝐹 Fn 𝐼)
46453ad2ant2 1127 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹 Fn 𝐼)
472a1i 11 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
48 suppvalfn 7452 . . . 4 ((𝐹 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
4946, 33, 47, 48syl3anc 1475 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
50 elrabi 3508 . . . . . . 7 (𝐺 ∈ { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} → 𝐺 ∈ (ℝ ↑𝑚 𝐼))
5150, 41eleq2s 2867 . . . . . 6 (𝐺𝑋𝐺 ∈ (ℝ ↑𝑚 𝐼))
52 elmapi 8030 . . . . . 6 (𝐺 ∈ (ℝ ↑𝑚 𝐼) → 𝐺:𝐼⟶ℝ)
53 ffn 6185 . . . . . 6 (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼)
5451, 52, 533syl 18 . . . . 5 (𝐺𝑋𝐺 Fn 𝐼)
55543ad2ant3 1128 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺 Fn 𝐼)
56 suppvalfn 7452 . . . 4 ((𝐺 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5755, 33, 47, 56syl3anc 1475 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5849, 57uneq12d 3917 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) = ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
5932, 39, 583sstr4d 3795 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826  w3a 1070   = wceq 1630  wcel 2144  wne 2942  {crab 3064  Vcvv 3349  cun 3719  wss 3721   class class class wbr 4784  cmpt 4861   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6792   supp csupp 7445  𝑚 cmap 8008   finSupp cfsupp 8430  cc 10135  cr 10136  0cc0 10137  cmin 10467  2c2 11271  cexp 13066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-seq 13008  df-exp 13067
This theorem is referenced by:  rrxmval  23406
  Copyright terms: Public domain W3C validator