Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmet Structured version   Visualization version   GIF version

Theorem rrxmet 23410
 Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmet (𝐼𝑉𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   ,𝐼   ,𝑉
Allowed substitution hints:   𝐷()   𝑋()

Proof of Theorem rrxmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
2 simprl 754 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
31, 2rrxfsupp 23404 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ∈ Fin)
4 simprr 756 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
51, 4rrxfsupp 23404 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ∈ Fin)
6 unfi 8383 . . . . . . . 8 (((𝑥 supp 0) ∈ Fin ∧ (𝑦 supp 0) ∈ Fin) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
73, 5, 6syl2anc 573 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
81, 2rrxsuppss 23405 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
91, 4rrxsuppss 23405 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
108, 9unssd 3940 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1110sselda 3752 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 𝑘𝐼)
121, 2rrxf 23403 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
1312ffvelrnda 6502 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
141, 4rrxf 23403 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1514ffvelrnda 6502 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
1613, 15resubcld 10660 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1716resqcld 13242 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1811, 17syldan 579 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
197, 18fsumrecl 14673 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
2016sqge0d 13243 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
2111, 20syldan 579 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
227, 18, 21fsumge0 14734 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
2319, 22resqrtcld 14364 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
2423ralrimivva 3120 . . . 4 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
25 eqid 2771 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
2625fmpt2 7387 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2724, 26sylib 208 . . 3 (𝐼𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
28 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
291, 28rrxmfval 23408 . . . 4 (𝐼𝑉𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))))
3029feq1d 6170 . . 3 (𝐼𝑉 → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
3127, 30mpbird 247 . 2 (𝐼𝑉𝐷:(𝑋 × 𝑋)⟶ℝ)
32 sqrt00 14212 . . . . . . 7 ((Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3319, 22, 32syl2anc 573 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
347, 18, 21fsum00 14737 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3516recnd 10270 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
36 sqeq0 13134 . . . . . . . . . 10 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3735, 36syl 17 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3813recnd 10270 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3915recnd 10270 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
4038, 39subeq0ad 10604 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4137, 40bitrd 268 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4211, 41syldan 579 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4342ralbidva 3134 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
4433, 34, 433bitrd 294 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
451, 28rrxmval 23407 . . . . . . 7 ((𝐼𝑉𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
46453expb 1113 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
4746eqeq1d 2773 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
4812ffnd 6186 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
4914ffnd 6186 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
50 eqfnfv 6454 . . . . . . 7 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
5148, 49, 50syl2anc 573 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
52 ssun1 3927 . . . . . . . . . . 11 (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5352a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
54 simpl 468 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
55 0red 10243 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ∈ ℝ)
5612, 53, 54, 55suppssr 7478 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = 0)
57 ssun2 3928 . . . . . . . . . . 11 (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5857a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
5914, 58, 54, 55suppssr 7478 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑦𝑘) = 0)
6056, 59eqtr4d 2808 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = (𝑦𝑘))
6160ralrimiva 3115 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))(𝑥𝑘) = (𝑦𝑘))
6210, 61raldifeq 4200 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘) ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
6351, 62bitr4d 271 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
6444, 47, 633bitr4d 300 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6573adant2 1125 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
66 simp2 1131 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑧𝑋)
671, 66rrxfsupp 23404 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ∈ Fin)
68 unfi 8383 . . . . . . . . . . 11 ((((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin ∧ (𝑧 supp 0) ∈ Fin) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
6965, 67, 68syl2anc 573 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
70693expa 1111 . . . . . . . . 9 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7170an32s 631 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7210adantr 466 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
73 simpr 471 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
741, 73rrxsuppss 23405 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧 supp 0) ⊆ 𝐼)
7572, 74unssd 3940 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
7675sselda 3752 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → 𝑘𝐼)
7713adantlr 694 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
781, 73rrxf 23403 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
7978ffvelrnda 6502 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
8077, 79resubcld 10660 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8176, 80syldan 579 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8215adantlr 694 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
8379, 82resubcld 10660 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8476, 83syldan 579 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8571, 81, 84trirn 23402 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
8638adantlr 694 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
8779recnd 10270 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
8839adantlr 694 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
8986, 87, 88npncand 10618 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
9089oveq1d 6808 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9176, 90syldan 579 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9291sumeq2dv 14641 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
9392fveq2d 6336 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
94 sqsubswap 13131 . . . . . . . . . . . 12 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9586, 87, 94syl2anc 573 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9676, 95syldan 579 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9796sumeq2dv 14641 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
9897fveq2d 6336 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
9998oveq1d 6808 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10085, 93, 993brtr3d 4817 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10146adantr 466 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
102 simp1 1130 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
10323adant2 1125 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
10443adant2 1125 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
1051, 103rrxsuppss 23405 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
1061, 104rrxsuppss 23405 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
107105, 106unssd 3940 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1081, 66rrxsuppss 23405 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ 𝐼)
109107, 108unssd 3940 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
110 ssun1 3927 . . . . . . . . . . . 12 ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
111110a1i 11 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1121, 28, 102, 103, 104, 109, 69, 111rrxmetlem 23409 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
113112fveq2d 6336 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1141133expa 1111 . . . . . . . 8 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
115114an32s 631 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
116101, 115eqtrd 2805 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1171, 28rrxmval 23407 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1181173adant3r 1195 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1191, 28rrxmval 23407 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
1201193adant3l 1193 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
121118, 120oveq12d 6811 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
122 ssun2 3928 . . . . . . . . . . . . . 14 (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
123122a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
12452, 110sstri 3761 . . . . . . . . . . . . . 14 (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
125124a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
126123, 125unssd 3940 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑥 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1271, 28, 102, 66, 103, 109, 69, 126rrxmetlem 23409 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
128127fveq2d 6336 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
12957, 110sstri 3761 . . . . . . . . . . . . . 14 (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
130129a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
131123, 130unssd 3940 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1321, 28, 102, 66, 104, 109, 69, 131rrxmetlem 23409 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))
133132fveq2d 6336 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
134128, 133oveq12d 6811 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
135121, 134eqtrd 2805 . . . . . . . 8 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
1361353expa 1111 . . . . . . 7 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
137136an32s 631 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
138100, 116, 1373brtr4d 4818 . . . . 5 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
139138ralrimiva 3115 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
14064, 139jca 501 . . 3 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
141140ralrimivva 3120 . 2 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
142 ovex 6823 . . . 4 (ℝ ↑𝑚 𝐼) ∈ V
1431, 142rabex2 4948 . . 3 𝑋 ∈ V
144 ismet 22348 . . 3 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
145143, 144ax-mp 5 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
14631, 141, 145sylanbrc 572 1 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  ∀wral 3061  {crab 3065  Vcvv 3351   ∖ cdif 3720   ∪ cun 3721   ⊆ wss 3723   class class class wbr 4786   × cxp 5247   Fn wfn 6026  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793   ↦ cmpt2 6795   supp csupp 7446   ↑𝑚 cmap 8009  Fincfn 8109   finSupp cfsupp 8431  ℂcc 10136  ℝcr 10137  0cc0 10138   + caddc 10141   ≤ cle 10277   − cmin 10468  2c2 11272  ↑cexp 13067  √csqrt 14181  Σcsu 14624  distcds 16158  Metcme 19947  ℝ^crrx 23390 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-rp 12036  df-ico 12386  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-0g 16310  df-gsum 16311  df-prds 16316  df-pws 16318  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925  df-drng 18959  df-field 18960  df-subrg 18988  df-staf 19055  df-srng 19056  df-lmod 19075  df-lss 19143  df-sra 19387  df-rgmod 19388  df-met 19955  df-cnfld 19962  df-refld 20168  df-dsmm 20293  df-frlm 20308  df-nm 22607  df-tng 22609  df-tch 23188  df-rrx 23392 This theorem is referenced by:  rrxdstprj1  23411  rrxmetfi  41024
 Copyright terms: Public domain W3C validator