![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxfsupp | Structured version Visualization version GIF version |
Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0} |
rrxf.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
Ref | Expression |
---|---|
rrxfsupp | ⊢ (𝜑 → (𝐹 supp 0) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxf.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
2 | rrxmval.1 | . . . . 5 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0} | |
3 | 1, 2 | syl6eleq 2858 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0}) |
4 | breq1 4786 | . . . . 5 ⊢ (ℎ = 𝐹 → (ℎ finSupp 0 ↔ 𝐹 finSupp 0)) | |
5 | 4 | elrab 3512 | . . . 4 ⊢ (𝐹 ∈ {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0} ↔ (𝐹 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝐹 finSupp 0)) |
6 | 3, 5 | sylib 208 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝐹 finSupp 0)) |
7 | 6 | simprd 483 | . 2 ⊢ (𝜑 → 𝐹 finSupp 0) |
8 | 7 | fsuppimpd 8436 | 1 ⊢ (𝜑 → (𝐹 supp 0) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1629 ∈ wcel 2143 {crab 3063 class class class wbr 4783 (class class class)co 6791 supp csupp 7444 ↑𝑚 cmap 8007 Fincfn 8107 finSupp cfsupp 8429 ℝcr 10135 0cc0 10136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pr 5033 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ral 3064 df-rex 3065 df-rab 3068 df-v 3350 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4572 df-br 4784 df-opab 4844 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6794 df-fsupp 8430 |
This theorem is referenced by: rrxmval 23413 rrxmet 23416 rrxdstprj1 23417 |
Copyright terms: Public domain | W3C validator |