![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxbasefi | Structured version Visualization version GIF version |
Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑𝑚 𝑋) for the development of the Lebeasgue measure theory for n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rrxbasefi.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
rrxbasefi.h | ⊢ 𝐻 = (ℝ^‘𝑋) |
rrxbasefi.b | ⊢ 𝐵 = (Base‘𝐻) |
Ref | Expression |
---|---|
rrxbasefi | ⊢ (𝜑 → 𝐵 = (ℝ ↑𝑚 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxbasefi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | rrxbasefi.h | . . . . 5 ⊢ 𝐻 = (ℝ^‘𝑋) | |
3 | rrxbasefi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐻) | |
4 | 2, 3 | rrxbase 23222 | . . . 4 ⊢ (𝑋 ∈ Fin → 𝐵 = {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0}) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0}) |
6 | ssrab2 3720 | . . . 4 ⊢ {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑𝑚 𝑋) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑𝑚 𝑋)) |
8 | 5, 7 | eqsstrd 3672 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑𝑚 𝑋)) |
9 | simpr 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓 ∈ (ℝ ↑𝑚 𝑋)) | |
10 | elmapi 7921 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℝ ↑𝑚 𝑋) → 𝑓:𝑋⟶ℝ) | |
11 | 10 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓:𝑋⟶ℝ) |
12 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑋 ∈ Fin) |
13 | c0ex 10072 | . . . . . . . . 9 ⊢ 0 ∈ V | |
14 | 13 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 0 ∈ V) |
15 | 11, 12, 14 | fdmfifsupp 8326 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓 finSupp 0) |
16 | 9, 15 | jca 553 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → (𝑓 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑓 finSupp 0)) |
17 | rabid 3145 | . . . . . 6 ⊢ (𝑓 ∈ {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} ↔ (𝑓 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑓 finSupp 0)) | |
18 | 16, 17 | sylibr 224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓 ∈ {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0}) |
19 | 5 | eqcomd 2657 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} = 𝐵) |
20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} = 𝐵) |
21 | 18, 20 | eleqtrd 2732 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓 ∈ 𝐵) |
22 | 21 | ralrimiva 2995 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (ℝ ↑𝑚 𝑋)𝑓 ∈ 𝐵) |
23 | dfss3 3625 | . . 3 ⊢ ((ℝ ↑𝑚 𝑋) ⊆ 𝐵 ↔ ∀𝑓 ∈ (ℝ ↑𝑚 𝑋)𝑓 ∈ 𝐵) | |
24 | 22, 23 | sylibr 224 | . 2 ⊢ (𝜑 → (ℝ ↑𝑚 𝑋) ⊆ 𝐵) |
25 | 8, 24 | eqssd 3653 | 1 ⊢ (𝜑 → 𝐵 = (ℝ ↑𝑚 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 Vcvv 3231 ⊆ wss 3607 class class class wbr 4685 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 Fincfn 7997 finSupp cfsupp 8316 ℝcr 9973 0cc0 9974 Basecbs 15904 ℝ^crrx 23217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-rp 11871 df-fz 12365 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-0g 16149 df-prds 16155 df-pws 16157 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-subg 17638 df-cmn 18241 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-field 18798 df-subrg 18826 df-sra 19220 df-rgmod 19221 df-cnfld 19795 df-refld 19999 df-dsmm 20124 df-frlm 20139 df-tng 22436 df-tch 23015 df-rrx 23219 |
This theorem is referenced by: rrxdsfi 40823 rrxtopnfi 40824 rrxmetfi 40825 rrxtoponfi 40829 qndenserrnopnlem 40835 qndenserrn 40837 rrnprjdstle 40839 |
Copyright terms: Public domain | W3C validator |