Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrntotbnd Structured version   Visualization version   GIF version

Theorem rrntotbnd 33917
Description: A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
rrntotbnd.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrntotbnd.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
rrntotbnd (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))

Proof of Theorem rrntotbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2748 . . 3 ((ℂflds ℝ) ↑s 𝐼) = ((ℂflds ℝ) ↑s 𝐼)
2 eqid 2748 . . 3 (dist‘((ℂflds ℝ) ↑s 𝐼)) = (dist‘((ℂflds ℝ) ↑s 𝐼))
3 rrntotbnd.1 . . 3 𝑋 = (ℝ ↑𝑚 𝐼)
41, 2, 3repwsmet 33915 . 2 (𝐼 ∈ Fin → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
53rrnmet 33910 . 2 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
6 hashcl 13310 . . . 4 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
7 nn0re 11464 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → (♯‘𝐼) ∈ ℝ)
8 nn0ge0 11481 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (♯‘𝐼))
97, 8resqrtcld 14326 . . . 4 ((♯‘𝐼) ∈ ℕ0 → (√‘(♯‘𝐼)) ∈ ℝ)
106, 9syl 17 . . 3 (𝐼 ∈ Fin → (√‘(♯‘𝐼)) ∈ ℝ)
117, 8sqrtge0d 14329 . . . 4 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (√‘(♯‘𝐼)))
126, 11syl 17 . . 3 (𝐼 ∈ Fin → 0 ≤ (√‘(♯‘𝐼)))
1310, 12ge0p1rpd 12066 . 2 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ+)
14 1rp 12000 . . 3 1 ∈ ℝ+
1514a1i 11 . 2 (𝐼 ∈ Fin → 1 ∈ ℝ+)
16 metcl 22309 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
17163expb 1113 . . . 4 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
185, 17sylan 489 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
1910adantr 472 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ∈ ℝ)
204adantr 472 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
21 simprl 811 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
22 simprr 813 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
23 metcl 22309 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
24 metge0 22322 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))
2523, 24jca 555 . . . . . 6 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2620, 21, 22, 25syl3anc 1463 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2726simpld 477 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
2819, 27remulcld 10233 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
29 peano2re 10372 . . . . . 6 ((√‘(♯‘𝐼)) ∈ ℝ → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3010, 29syl 17 . . . . 5 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3130adantr 472 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3231, 27remulcld 10233 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
33 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
341, 2, 3, 33rrnequiv 33916 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦) ∧ (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))))
3534simprd 482 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3619lep1d 11118 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1))
37 lemul1a 11040 . . . 4 ((((√‘(♯‘𝐼)) ∈ ℝ ∧ ((√‘(♯‘𝐼)) + 1) ∈ ℝ ∧ ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))) ∧ (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3819, 31, 26, 36, 37syl31anc 1466 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3918, 28, 32, 35, 38letrd 10357 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
4034simpld 477 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦))
4118recnd 10231 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℂ)
4241mulid2d 10221 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (1 · (𝑥(ℝn𝐼)𝑦)) = (𝑥(ℝn𝐼)𝑦))
4340, 42breqtrrd 4820 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (1 · (𝑥(ℝn𝐼)𝑦)))
44 eqid 2748 . 2 ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) = ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌))
45 rrntotbnd.2 . 2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
46 ax-resscn 10156 . . 3 ℝ ⊆ ℂ
471, 44cnpwstotbnd 33878 . . 3 ((ℝ ⊆ ℂ ∧ 𝐼 ∈ Fin) → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
4846, 47mpan 708 . 2 (𝐼 ∈ Fin → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
494, 5, 13, 15, 39, 43, 44, 45, 48equivbnd2 33873 1 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127  wss 3703   class class class wbr 4792   × cxp 5252  cres 5256  cfv 6037  (class class class)co 6801  𝑚 cmap 8011  Fincfn 8109  cc 10097  cr 10098  0cc0 10099  1c1 10100   + caddc 10102   · cmul 10104  cle 10238  0cn0 11455  +crp 11996  chash 13282  csqrt 14143  s cress 16031  distcds 16123  s cpws 16280  Metcme 19905  fldccnfld 19919  TotBndctotbnd 33847  Bndcbnd 33848  ncrrn 33906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-ec 7901  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-gz 15807  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-rest 16256  df-topn 16257  df-topgen 16277  df-prds 16281  df-pws 16283  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-cnfld 19920  df-top 20872  df-topon 20889  df-topsp 20910  df-bases 20923  df-xms 22297  df-ms 22298  df-totbnd 33849  df-bnd 33860  df-rrn 33907
This theorem is referenced by:  rrnheibor  33918
  Copyright terms: Public domain W3C validator