Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnheibor Structured version   Visualization version   GIF version

Theorem rrnheibor 33949
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
rrnheibor.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrnheibor.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
rrnheibor.3 𝑇 = (MetOpen‘𝑀)
rrnheibor.4 𝑈 = (MetOpen‘(ℝn𝐼))
Assertion
Ref Expression
rrnheibor ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem rrnheibor
StepHypRef Expression
1 rrnheibor.1 . . . . . 6 𝑋 = (ℝ ↑𝑚 𝐼)
21rrnmet 33941 . . . . 5 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
3 rrnheibor.2 . . . . . 6 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
4 metres2 22369 . . . . . 6 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
53, 4syl5eqel 2843 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
62, 5sylan 489 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
76biantrurd 530 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp)))
8 rrnheibor.3 . . . 4 𝑇 = (MetOpen‘𝑀)
98heibor 33933 . . 3 ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))
107, 9syl6bb 276 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))))
113eleq1i 2830 . . . 4 (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
121rrncms 33945 . . . . . 6 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (CMet‘𝑋))
1312adantr 472 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (ℝn𝐼) ∈ (CMet‘𝑋))
14 rrnheibor.4 . . . . . 6 𝑈 = (MetOpen‘(ℝn𝐼))
1514cmetss 23313 . . . . 5 ((ℝn𝐼) ∈ (CMet‘𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1613, 15syl 17 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1711, 16syl5bb 272 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
181, 3rrntotbnd 33948 . . . 4 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
1918adantr 472 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
2017, 19anbi12d 749 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
2110, 20bitrd 268 1 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wss 3715   × cxp 5264  cres 5268  cfv 6049  (class class class)co 6813  𝑚 cmap 8023  Fincfn 8121  cr 10127  Metcme 19934  MetOpencmopn 19938  Clsdccld 21022  Compccmp 21391  CMetcms 23252  TotBndctotbnd 33878  Bndcbnd 33879  ncrrn 33937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cc 9449  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-ec 7913  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-gz 15836  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-topgen 16306  df-prds 16310  df-pws 16312  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lm 21235  df-haus 21321  df-cmp 21392  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-cfil 23253  df-cau 23254  df-cmet 23255  df-totbnd 33880  df-bnd 33891  df-rrn 33938
This theorem is referenced by:  reheibor  33951
  Copyright terms: Public domain W3C validator