Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndstprj2 Structured version   Visualization version   GIF version

Theorem rrndstprj2 33962
Description: Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 33961 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrndstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrndstprj2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) < (𝑅 · (√‘(♯‘𝐼))))
Distinct variable groups:   𝑛,𝐺   𝑛,𝐼   𝑛,𝑀   𝑅,𝑛   𝑛,𝐹
Allowed substitution hint:   𝑋(𝑛)

Proof of Theorem rrndstprj2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1227 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ∈ (Fin ∖ {∅}))
21eldifad 3735 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ∈ Fin)
3 simpl2 1229 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹𝑋)
4 simpl3 1231 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺𝑋)
5 rrnval.1 . . . 4 𝑋 = (ℝ ↑𝑚 𝐼)
65rrnmval 33959 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
72, 3, 4, 6syl3anc 1476 . 2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
8 eldifsni 4458 . . . . . 6 (𝐼 ∈ (Fin ∖ {∅}) → 𝐼 ≠ ∅)
91, 8syl 17 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ≠ ∅)
103, 5syl6eleq 2860 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹 ∈ (ℝ ↑𝑚 𝐼))
11 elmapi 8035 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑𝑚 𝐼) → 𝐹:𝐼⟶ℝ)
1210, 11syl 17 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹:𝐼⟶ℝ)
1312ffvelrnda 6504 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
144, 5syl6eleq 2860 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺 ∈ (ℝ ↑𝑚 𝐼))
15 elmapi 8035 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑𝑚 𝐼) → 𝐺:𝐼⟶ℝ)
1614, 15syl 17 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺:𝐼⟶ℝ)
1716ffvelrnda 6504 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1813, 17resubcld 10664 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
1918resqcld 13242 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
20 simprl 754 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℝ+)
2120rpred 12075 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℝ)
2221resqcld 13242 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℝ)
2322adantr 466 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝑅↑2) ∈ ℝ)
24 absresq 14250 . . . . . . 7 (((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
2518, 24syl 17 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
26 rrndstprj1.1 . . . . . . . . . 10 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
2726remetdval 22812 . . . . . . . . 9 (((𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)𝑀(𝐺𝑘)) = (abs‘((𝐹𝑘) − (𝐺𝑘))))
2813, 17, 27syl2anc 573 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) = (abs‘((𝐹𝑘) − (𝐺𝑘))))
29 simprr 756 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)
30 fveq2 6333 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
31 fveq2 6333 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
3230, 31oveq12d 6814 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐹𝑛)𝑀(𝐺𝑛)) = ((𝐹𝑘)𝑀(𝐺𝑘)))
3332breq1d 4797 . . . . . . . . . 10 (𝑛 = 𝑘 → (((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅 ↔ ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅))
3433rspccva 3459 . . . . . . . . 9 ((∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅)
3529, 34sylan 569 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅)
3628, 35eqbrtrrd 4811 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑅)
3718recnd 10274 . . . . . . . . 9 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
3837abscld 14383 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (abs‘((𝐹𝑘) − (𝐺𝑘))) ∈ ℝ)
3921adantr 466 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 𝑅 ∈ ℝ)
4037absge0d 14391 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ (abs‘((𝐹𝑘) − (𝐺𝑘))))
4120rpge0d 12079 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ 𝑅)
4241adantr 466 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ 𝑅)
4338, 39, 40, 42lt2sqd 13250 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑅 ↔ ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) < (𝑅↑2)))
4436, 43mpbid 222 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) < (𝑅↑2))
4525, 44eqbrtrrd 4811 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) < (𝑅↑2))
462, 9, 19, 23, 45fsumlt 14739 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) < Σ𝑘𝐼 (𝑅↑2))
472, 19fsumrecl 14673 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
4818sqge0d 13243 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
492, 19, 48fsumge0 14734 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
50 resqrtth 14204 . . . . 5 ((Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
5147, 49, 50syl2anc 573 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
52 hashnncl 13359 . . . . . . . . . . . 12 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
532, 52syl 17 . . . . . . . . . . 11 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
549, 53mpbird 247 . . . . . . . . . 10 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℕ)
5554nnrpd 12073 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℝ+)
5655rpred 12075 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℝ)
5755rpge0d 12079 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (♯‘𝐼))
58 resqrtth 14204 . . . . . . . 8 (((♯‘𝐼) ∈ ℝ ∧ 0 ≤ (♯‘𝐼)) → ((√‘(♯‘𝐼))↑2) = (♯‘𝐼))
5956, 57, 58syl2anc 573 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘(♯‘𝐼))↑2) = (♯‘𝐼))
6059oveq2d 6812 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · ((√‘(♯‘𝐼))↑2)) = ((𝑅↑2) · (♯‘𝐼)))
6122recnd 10274 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℂ)
6255rpcnd 12077 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℂ)
6361, 62mulcomd 10267 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · (♯‘𝐼)) = ((♯‘𝐼) · (𝑅↑2)))
6460, 63eqtrd 2805 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · ((√‘(♯‘𝐼))↑2)) = ((♯‘𝐼) · (𝑅↑2)))
6520rpcnd 12077 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℂ)
6655rpsqrtcld 14358 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘(♯‘𝐼)) ∈ ℝ+)
6766rpcnd 12077 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘(♯‘𝐼)) ∈ ℂ)
6865, 67sqmuld 13227 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅 · (√‘(♯‘𝐼)))↑2) = ((𝑅↑2) · ((√‘(♯‘𝐼))↑2)))
69 fsumconst 14729 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑅↑2) ∈ ℂ) → Σ𝑘𝐼 (𝑅↑2) = ((♯‘𝐼) · (𝑅↑2)))
702, 61, 69syl2anc 573 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (𝑅↑2) = ((♯‘𝐼) · (𝑅↑2)))
7164, 68, 703eqtr4d 2815 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅 · (√‘(♯‘𝐼)))↑2) = Σ𝑘𝐼 (𝑅↑2))
7246, 51, 713brtr4d 4819 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) < ((𝑅 · (√‘(♯‘𝐼)))↑2))
7347, 49resqrtcld 14364 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
7420, 66rpmulcld 12091 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅 · (√‘(♯‘𝐼))) ∈ ℝ+)
7574rpred 12075 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅 · (√‘(♯‘𝐼))) ∈ ℝ)
7647, 49sqrtge0d 14367 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
7774rpge0d 12079 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (𝑅 · (√‘(♯‘𝐼))))
7873, 75, 76, 77lt2sqd 13250 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) < (𝑅 · (√‘(♯‘𝐼))) ↔ ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) < ((𝑅 · (√‘(♯‘𝐼)))↑2)))
7972, 78mpbird 247 . 2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) < (𝑅 · (√‘(♯‘𝐼))))
807, 79eqbrtrd 4809 1 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) < (𝑅 · (√‘(♯‘𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  cdif 3720  c0 4063  {csn 4317   class class class wbr 4787   × cxp 5248  cres 5252  ccom 5254  wf 6026  cfv 6030  (class class class)co 6796  𝑚 cmap 8013  Fincfn 8113  cc 10140  cr 10141  0cc0 10142   · cmul 10147   < clt 10280  cle 10281  cmin 10472  cn 11226  2c2 11276  +crp 12035  cexp 13067  chash 13321  csqrt 14181  abscabs 14182  Σcsu 14624  ncrrn 33956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-ico 12386  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-rrn 33957
This theorem is referenced by:  rrncmslem  33963  rrnequiv  33966
  Copyright terms: Public domain W3C validator