Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndistlt Structured version   Visualization version   GIF version

Theorem rrndistlt 40982
Description: Given two points in the space of n-dimensional real numbers, if every component is closer than 𝐸 then the distance between the two points is less then ((√‘𝑛) · 𝐸) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrndistlt.i (𝜑𝐼 ∈ Fin)
rrndistlt.z (𝜑𝐼 ≠ ∅)
rrndistlt.n 𝑁 = (♯‘𝐼)
rrndistlt.x (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
rrndistlt.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝐼))
rrndistlt.l ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
rrndistlt.e (𝜑𝐸 ∈ ℝ+)
rrndistlt.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrndistlt (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐼   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖
Allowed substitution hints:   𝐷(𝑖)   𝑁(𝑖)

Proof of Theorem rrndistlt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrndistlt.i . . . . 5 (𝜑𝐼 ∈ Fin)
2 rrndistlt.z . . . . 5 (𝜑𝐼 ≠ ∅)
3 rrndistlt.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
4 elmapi 8033 . . . . . . . . . . 11 (𝑋 ∈ (ℝ ↑𝑚 𝐼) → 𝑋:𝐼⟶ℝ)
53, 4syl 17 . . . . . . . . . 10 (𝜑𝑋:𝐼⟶ℝ)
6 ax-resscn 10156 . . . . . . . . . . 11 ℝ ⊆ ℂ
76a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
85, 7fssd 6206 . . . . . . . . 9 (𝜑𝑋:𝐼⟶ℂ)
98ffvelrnda 6510 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
10 rrndistlt.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝐼))
11 elmapi 8033 . . . . . . . . . . 11 (𝑌 ∈ (ℝ ↑𝑚 𝐼) → 𝑌:𝐼⟶ℝ)
1210, 11syl 17 . . . . . . . . . 10 (𝜑𝑌:𝐼⟶ℝ)
1312, 7fssd 6206 . . . . . . . . 9 (𝜑𝑌:𝐼⟶ℂ)
1413ffvelrnda 6510 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℂ)
159, 14subcld 10555 . . . . . . 7 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℂ)
1615abscld 14345 . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ)
1716resqcld 13200 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) ∈ ℝ)
18 rrndistlt.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
1918rpred 12036 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
2019resqcld 13200 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℝ)
2120adantr 472 . . . . 5 ((𝜑𝑖𝐼) → (𝐸↑2) ∈ ℝ)
22 rrndistlt.l . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
2315absge0d 14353 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖))))
2419adantr 472 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
2518adantr 472 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ+)
2625rpge0d 12040 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ 𝐸)
27 lt2sq 13102 . . . . . . 7 ((((abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ ∧ 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖)))) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸)) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2816, 23, 24, 26, 27syl22anc 1464 . . . . . 6 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2922, 28mpbid 222 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2))
301, 2, 17, 21, 29fsumlt 14702 . . . 4 (𝜑 → Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2))
315ffvelrnda 6510 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
3212ffvelrnda 6510 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℝ)
3331, 32resubcld 10621 . . . . . . . 8 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ)
34 absresq 14212 . . . . . . . 8 (((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3635eqcomd 2754 . . . . . 6 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) = ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
3736sumeq2dv 14603 . . . . 5 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) = Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
386, 20sseldi 3730 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
39 fsumconst 14692 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝐸↑2) ∈ ℂ) → Σ𝑖𝐼 (𝐸↑2) = ((♯‘𝐼) · (𝐸↑2)))
401, 38, 39syl2anc 696 . . . . . 6 (𝜑 → Σ𝑖𝐼 (𝐸↑2) = ((♯‘𝐼) · (𝐸↑2)))
41 rrndistlt.n . . . . . . . . 9 𝑁 = (♯‘𝐼)
42 eqcom 2755 . . . . . . . . 9 (𝑁 = (♯‘𝐼) ↔ (♯‘𝐼) = 𝑁)
4341, 42mpbi 220 . . . . . . . 8 (♯‘𝐼) = 𝑁
4443oveq1i 6811 . . . . . . 7 ((♯‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2))
4544a1i 11 . . . . . 6 (𝜑 → ((♯‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2)))
4640, 45eqtr2d 2783 . . . . 5 (𝜑 → (𝑁 · (𝐸↑2)) = Σ𝑖𝐼 (𝐸↑2))
4737, 46breq12d 4805 . . . 4 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2)))
4830, 47mpbird 247 . . 3 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)))
49 nfv 1980 . . . . 5 𝑖𝜑
5033resqcld 13200 . . . . 5 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5149, 1, 50fsumreclf 40280 . . . 4 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5233sqge0d 13201 . . . . 5 ((𝜑𝑖𝐼) → 0 ≤ (((𝑋𝑖) − (𝑌𝑖))↑2))
531, 50, 52fsumge0 14697 . . . 4 (𝜑 → 0 ≤ Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
54 hashcl 13310 . . . . . . . 8 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
551, 54syl 17 . . . . . . 7 (𝜑 → (♯‘𝐼) ∈ ℕ0)
5641, 55syl5eqel 2831 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5756nn0red 11515 . . . . 5 (𝜑𝑁 ∈ ℝ)
5857, 20remulcld 10233 . . . 4 (𝜑 → (𝑁 · (𝐸↑2)) ∈ ℝ)
5956nn0ge0d 11517 . . . . 5 (𝜑 → 0 ≤ 𝑁)
6019sqge0d 13201 . . . . 5 (𝜑 → 0 ≤ (𝐸↑2))
6157, 20, 59, 60mulge0d 10767 . . . 4 (𝜑 → 0 ≤ (𝑁 · (𝐸↑2)))
6251, 53, 58, 61sqrtltd 14336 . . 3 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
6348, 62mpbid 222 . 2 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2))))
64 rrndistlt.d . . . . . 6 𝐷 = (dist‘(ℝ^‘𝐼))
6564a1i 11 . . . . 5 (𝜑𝐷 = (dist‘(ℝ^‘𝐼)))
66 eqid 2748 . . . . . . 7 (ℝ^‘𝐼) = (ℝ^‘𝐼)
67 eqid 2748 . . . . . . 7 (ℝ ↑𝑚 𝐼) = (ℝ ↑𝑚 𝐼)
6866, 67rrxdsfi 40977 . . . . . 6 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
691, 68syl 17 . . . . 5 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
7065, 69eqtrd 2782 . . . 4 (𝜑𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
71 fveq1 6339 . . . . . . . . . 10 (𝑓 = 𝑋 → (𝑓𝑖) = (𝑋𝑖))
7271adantr 472 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑓𝑖) = (𝑋𝑖))
73 fveq1 6339 . . . . . . . . . 10 (𝑔 = 𝑌 → (𝑔𝑖) = (𝑌𝑖))
7473adantl 473 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑔𝑖) = (𝑌𝑖))
7572, 74oveq12d 6819 . . . . . . . 8 ((𝑓 = 𝑋𝑔 = 𝑌) → ((𝑓𝑖) − (𝑔𝑖)) = ((𝑋𝑖) − (𝑌𝑖)))
7675oveq1d 6816 . . . . . . 7 ((𝑓 = 𝑋𝑔 = 𝑌) → (((𝑓𝑖) − (𝑔𝑖))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
7776sumeq2ad 14604 . . . . . 6 ((𝑓 = 𝑋𝑔 = 𝑌) → Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2) = Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
7877fveq2d 6344 . . . . 5 ((𝑓 = 𝑋𝑔 = 𝑌) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
7978adantl 473 . . . 4 ((𝜑 ∧ (𝑓 = 𝑋𝑔 = 𝑌)) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
8051, 53resqrtcld 14326 . . . 4 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) ∈ ℝ)
8170, 79, 3, 10, 80ovmpt2d 6941 . . 3 (𝜑 → (𝑋𝐷𝑌) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
82 sqrtmul 14170 . . . . 5 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝐸↑2) ∈ ℝ ∧ 0 ≤ (𝐸↑2))) → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8357, 59, 20, 60, 82syl22anc 1464 . . . 4 (𝜑 → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8418rpge0d 12040 . . . . . 6 (𝜑 → 0 ≤ 𝐸)
8519, 84sqrtsqd 14328 . . . . 5 (𝜑 → (√‘(𝐸↑2)) = 𝐸)
8685oveq2d 6817 . . . 4 (𝜑 → ((√‘𝑁) · (√‘(𝐸↑2))) = ((√‘𝑁) · 𝐸))
8783, 86eqtr2d 2783 . . 3 (𝜑 → ((√‘𝑁) · 𝐸) = (√‘(𝑁 · (𝐸↑2))))
8881, 87breq12d 4805 . 2 (𝜑 → ((𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
8963, 88mpbird 247 1 (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  wss 3703  c0 4046   class class class wbr 4792  wf 6033  cfv 6037  (class class class)co 6801  cmpt2 6803  𝑚 cmap 8011  Fincfn 8109  cc 10097  cr 10098  0cc0 10099   · cmul 10104   < clt 10237  cle 10238  cmin 10429  2c2 11233  0cn0 11455  +crp 11996  cexp 13025  chash 13282  csqrt 14143  abscabs 14144  Σcsu 14586  distcds 16123  ℝ^crrx 23342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-sup 8501  df-oi 8568  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-rp 11997  df-ico 12345  df-fz 12491  df-fzo 12631  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-0g 16275  df-gsum 16276  df-prds 16281  df-pws 16283  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-mhm 17507  df-grp 17597  df-minusg 17598  df-sbg 17599  df-subg 17763  df-ghm 17830  df-cntz 17921  df-cmn 18366  df-abl 18367  df-mgp 18661  df-ur 18673  df-ring 18720  df-cring 18721  df-oppr 18794  df-dvdsr 18812  df-unit 18813  df-invr 18843  df-dvr 18854  df-rnghom 18888  df-drng 18922  df-field 18923  df-subrg 18951  df-staf 19018  df-srng 19019  df-lmod 19038  df-lss 19106  df-sra 19345  df-rgmod 19346  df-cnfld 19920  df-refld 20124  df-dsmm 20249  df-frlm 20264  df-nm 22559  df-tng 22561  df-tch 23140  df-rrx 23344
This theorem is referenced by:  qndenserrnbllem  40986
  Copyright terms: Public domain W3C validator