Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrncmslem Structured version   Visualization version   GIF version

Theorem rrncmslem 33302
 Description: Lemma for rrncms 33303. (Contributed by Jeff Madsen, 6-Jun-2014.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrndstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
rrncms.3 𝐽 = (MetOpen‘(ℝn𝐼))
rrncms.4 (𝜑𝐼 ∈ Fin)
rrncms.5 (𝜑𝐹 ∈ (Cau‘(ℝn𝐼)))
rrncms.6 (𝜑𝐹:ℕ⟶𝑋)
rrncms.7 𝑃 = (𝑚𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚))))
Assertion
Ref Expression
rrncmslem (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Distinct variable groups:   𝑚,𝐼   𝑡,𝑚,𝐹
Allowed substitution hints:   𝜑(𝑡,𝑚)   𝑃(𝑡,𝑚)   𝐼(𝑡)   𝐽(𝑡,𝑚)   𝑀(𝑡,𝑚)   𝑋(𝑡,𝑚)

Proof of Theorem rrncmslem
Dummy variables 𝑘 𝑛 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmrel 20974 . 2 Rel (⇝𝑡𝐽)
2 fvex 6168 . . . . . . . 8 ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚))) ∈ V
3 rrncms.7 . . . . . . . 8 𝑃 = (𝑚𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚))))
42, 3fnmpti 5989 . . . . . . 7 𝑃 Fn 𝐼
54a1i 11 . . . . . 6 (𝜑𝑃 Fn 𝐼)
6 nnuz 11683 . . . . . . . 8 ℕ = (ℤ‘1)
7 1zzd 11368 . . . . . . . 8 ((𝜑𝑛𝐼) → 1 ∈ ℤ)
8 fveq2 6158 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑘 → (𝐹𝑡) = (𝐹𝑘))
98fveq1d 6160 . . . . . . . . . . . . . . 15 (𝑡 = 𝑘 → ((𝐹𝑡)‘𝑛) = ((𝐹𝑘)‘𝑛))
10 eqid 2621 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) = (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))
11 fvex 6168 . . . . . . . . . . . . . . 15 ((𝐹𝑘)‘𝑛) ∈ V
129, 10, 11fvmpt 6249 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) = ((𝐹𝑘)‘𝑛))
1312adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) = ((𝐹𝑘)‘𝑛))
14 rrncms.6 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℕ⟶𝑋)
1514ffvelrnda 6325 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
16 rrnval.1 . . . . . . . . . . . . . . . . 17 𝑋 = (ℝ ↑𝑚 𝐼)
1715, 16syl6eleq 2708 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (ℝ ↑𝑚 𝐼))
18 elmapi 7839 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (ℝ ↑𝑚 𝐼) → (𝐹𝑘):𝐼⟶ℝ)
1917, 18syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘):𝐼⟶ℝ)
2019ffvelrnda 6325 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝐼) → ((𝐹𝑘)‘𝑛) ∈ ℝ)
2120an32s 845 . . . . . . . . . . . . 13 (((𝜑𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)‘𝑛) ∈ ℝ)
2213, 21eqeltrd 2698 . . . . . . . . . . . 12 (((𝜑𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) ∈ ℝ)
2322recnd 10028 . . . . . . . . . . 11 (((𝜑𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) ∈ ℂ)
24 rrncms.5 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (Cau‘(ℝn𝐼)))
25 rrncms.4 . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ Fin)
2616rrnmet 33299 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝn𝐼) ∈ (Met‘𝑋))
28 metxmet 22079 . . . . . . . . . . . . . . . 16 ((ℝn𝐼) ∈ (Met‘𝑋) → (ℝn𝐼) ∈ (∞Met‘𝑋))
2927, 28syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℝn𝐼) ∈ (∞Met‘𝑋))
30 1zzd 11368 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℤ)
31 eqidd 2622 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
32 eqidd 2622 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
336, 29, 30, 31, 32, 14iscauf 23018 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ∈ (Cau‘(ℝn𝐼)) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥))
3424, 33mpbid 222 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥)
3534adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥)
3625ad3antrrr 765 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐼 ∈ Fin)
37 simpllr 798 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑛𝐼)
3814ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶𝑋)
39 eluznn 11718 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
4039adantll 749 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
4138, 40ffvelrnd 6326 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
42 simplr 791 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
4338, 42ffvelrnd 6326 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ 𝑋)
44 rrndstprj1.1 . . . . . . . . . . . . . . . . . . . . 21 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
4516, 44rrndstprj1 33300 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ Fin ∧ 𝑛𝐼) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑘)(ℝn𝐼)(𝐹𝑗)))
4636, 37, 41, 43, 45syl22anc 1324 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑘)(ℝn𝐼)(𝐹𝑗)))
4727ad3antrrr 765 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℝn𝐼) ∈ (Met‘𝑋))
48 metsym 22095 . . . . . . . . . . . . . . . . . . . 20 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)(ℝn𝐼)(𝐹𝑗)) = ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)))
4947, 41, 43, 48syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)(ℝn𝐼)(𝐹𝑗)) = ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)))
5046, 49breqtrd 4649 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)))
5150adantllr 754 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)))
5244remet 22533 . . . . . . . . . . . . . . . . . . . . 21 𝑀 ∈ (Met‘ℝ)
5352a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑀 ∈ (Met‘ℝ))
54 simpll 789 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝜑𝑛𝐼))
5554, 40, 21syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)‘𝑛) ∈ ℝ)
5614ffvelrnda 6325 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝑋)
5756, 16syl6eleq 2708 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ ↑𝑚 𝐼))
58 elmapi 7839 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑗) ∈ (ℝ ↑𝑚 𝐼) → (𝐹𝑗):𝐼⟶ℝ)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗):𝐼⟶ℝ)
6059ffvelrnda 6325 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛𝐼) → ((𝐹𝑗)‘𝑛) ∈ ℝ)
6160an32s 845 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗)‘𝑛) ∈ ℝ)
6261adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑗)‘𝑛) ∈ ℝ)
63 metcl 22077 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ (Met‘ℝ) ∧ ((𝐹𝑘)‘𝑛) ∈ ℝ ∧ ((𝐹𝑗)‘𝑛) ∈ ℝ) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ∈ ℝ)
6453, 55, 62, 63syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ∈ ℝ)
6564adantllr 754 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ∈ ℝ)
66 metcl 22077 . . . . . . . . . . . . . . . . . . . 20 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∈ ℝ)
6747, 43, 41, 66syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∈ ℝ)
6867adantllr 754 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∈ ℝ)
69 rpre 11799 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7069adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
7170ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
72 lelttr 10088 . . . . . . . . . . . . . . . . . 18 (((((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ∈ ℝ ∧ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∧ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7365, 68, 71, 72syl3anc 1323 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∧ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7451, 73mpand 710 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7574ralimdva 2958 . . . . . . . . . . . . . . 15 ((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7675reximdva 3013 . . . . . . . . . . . . . 14 (((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7776ralimdva 2958 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7844remetdval 22532 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑘)‘𝑛) ∈ ℝ ∧ ((𝐹𝑗)‘𝑛) ∈ ℝ) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) = (abs‘(((𝐹𝑘)‘𝑛) − ((𝐹𝑗)‘𝑛))))
7955, 62, 78syl2anc 692 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) = (abs‘(((𝐹𝑘)‘𝑛) − ((𝐹𝑗)‘𝑛))))
8040, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) = ((𝐹𝑘)‘𝑛))
81 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑗 → (𝐹𝑡) = (𝐹𝑗))
8281fveq1d 6160 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑗 → ((𝐹𝑡)‘𝑛) = ((𝐹𝑗)‘𝑛))
83 fvex 6168 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑗)‘𝑛) ∈ V
8482, 10, 83fvmpt 6249 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗) = ((𝐹𝑗)‘𝑛))
8584ad2antlr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗) = ((𝐹𝑗)‘𝑛))
8680, 85oveq12d 6633 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗)) = (((𝐹𝑘)‘𝑛) − ((𝐹𝑗)‘𝑛)))
8786fveq2d 6162 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) = (abs‘(((𝐹𝑘)‘𝑛) − ((𝐹𝑗)‘𝑛))))
8879, 87eqtr4d 2658 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) = (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))))
8988breq1d 4633 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥 ↔ (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9089ralbidva 2981 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9190rexbidva 3044 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9291ralbidv 2982 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9377, 92sylibd 229 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9435, 93mpd 15 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥)
95 nnex 10986 . . . . . . . . . . . . 13 ℕ ∈ V
9695mptex 6451 . . . . . . . . . . . 12 (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ∈ V
9796a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ∈ V)
986, 23, 94, 97caucvg 14359 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ∈ dom ⇝ )
99 climdm 14235 . . . . . . . . . 10 ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ∈ dom ⇝ ↔ (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ⇝ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
10098, 99sylib 208 . . . . . . . . 9 ((𝜑𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ⇝ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
101 fveq2 6158 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝐹𝑡)‘𝑚) = ((𝐹𝑡)‘𝑛))
102101mpteq2dv 4715 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚)) = (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)))
103102fveq2d 6162 . . . . . . . . . . 11 (𝑚 = 𝑛 → ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚))) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
104 fvex 6168 . . . . . . . . . . 11 ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))) ∈ V
105103, 3, 104fvmpt 6249 . . . . . . . . . 10 (𝑛𝐼 → (𝑃𝑛) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
106105adantl 482 . . . . . . . . 9 ((𝜑𝑛𝐼) → (𝑃𝑛) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
107100, 106breqtrrd 4651 . . . . . . . 8 ((𝜑𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ⇝ (𝑃𝑛))
1086, 7, 107, 22climrecl 14264 . . . . . . 7 ((𝜑𝑛𝐼) → (𝑃𝑛) ∈ ℝ)
109108ralrimiva 2962 . . . . . 6 (𝜑 → ∀𝑛𝐼 (𝑃𝑛) ∈ ℝ)
110 ffnfv 6354 . . . . . 6 (𝑃:𝐼⟶ℝ ↔ (𝑃 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑃𝑛) ∈ ℝ))
1115, 109, 110sylanbrc 697 . . . . 5 (𝜑𝑃:𝐼⟶ℝ)
112 reex 9987 . . . . . 6 ℝ ∈ V
113 elmapg 7830 . . . . . 6 ((ℝ ∈ V ∧ 𝐼 ∈ Fin) → (𝑃 ∈ (ℝ ↑𝑚 𝐼) ↔ 𝑃:𝐼⟶ℝ))
114112, 25, 113sylancr 694 . . . . 5 (𝜑 → (𝑃 ∈ (ℝ ↑𝑚 𝐼) ↔ 𝑃:𝐼⟶ℝ))
115111, 114mpbird 247 . . . 4 (𝜑𝑃 ∈ (ℝ ↑𝑚 𝐼))
116115, 16syl6eleqr 2709 . . 3 (𝜑𝑃𝑋)
117 1nn 10991 . . . . . . 7 1 ∈ ℕ
11825ad2antrr 761 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ Fin)
11915adantlr 750 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
120116ad2antrr 761 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝑃𝑋)
12116rrnmval 33298 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) → ((𝐹𝑘)(ℝn𝐼)𝑃) = (√‘Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2)))
122118, 119, 120, 121syl3anc 1323 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)(ℝn𝐼)𝑃) = (√‘Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2)))
123 simplrr 800 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 = ∅)
124123sumeq1d 14381 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2) = Σ𝑦 ∈ ∅ ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2))
125 sum0 14401 . . . . . . . . . . . . 13 Σ𝑦 ∈ ∅ ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2) = 0
126124, 125syl6eq 2671 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2) = 0)
127126fveq2d 6162 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → (√‘Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2)) = (√‘0))
128122, 127eqtrd 2655 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)(ℝn𝐼)𝑃) = (√‘0))
129 sqrt0 13932 . . . . . . . . . 10 (√‘0) = 0
130128, 129syl6eq 2671 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)(ℝn𝐼)𝑃) = 0)
131 simplrl 799 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ+)
132131rpgt0d 11835 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 0 < 𝑥)
133130, 132eqbrtrd 4645 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
134133ralrimiva 2962 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) → ∀𝑘 ∈ ℕ ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
135 fveq2 6158 . . . . . . . . . 10 (𝑗 = 1 → (ℤ𝑗) = (ℤ‘1))
136135, 6syl6eqr 2673 . . . . . . . . 9 (𝑗 = 1 → (ℤ𝑗) = ℕ)
137136raleqdv 3137 . . . . . . . 8 (𝑗 = 1 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
138137rspcev 3299 . . . . . . 7 ((1 ∈ ℕ ∧ ∀𝑘 ∈ ℕ ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
139117, 134, 138sylancr 694 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
140139expr 642 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (𝐼 = ∅ → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
141 1zzd 11368 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 1 ∈ ℤ)
142 simprl 793 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → 𝑥 ∈ ℝ+)
143 simprr 795 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → 𝐼 ≠ ∅)
14425adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → 𝐼 ∈ Fin)
145 hashnncl 13113 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ Fin → ((#‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
146144, 145syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → ((#‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
147143, 146mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (#‘𝐼) ∈ ℕ)
148147nnrpd 11830 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (#‘𝐼) ∈ ℝ+)
149148rpsqrtcld 14100 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (√‘(#‘𝐼)) ∈ ℝ+)
150142, 149rpdivcld 11849 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (𝑥 / (√‘(#‘𝐼))) ∈ ℝ+)
151150adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑥 / (√‘(#‘𝐼))) ∈ ℝ+)
15212adantl 482 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) = ((𝐹𝑘)‘𝑛))
153107adantlr 750 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ⇝ (𝑃𝑛))
1546, 141, 151, 152, 153climi2 14192 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(#‘𝐼))))
155 1z 11367 . . . . . . . . . . . 12 1 ∈ ℤ
1566rexuz3 14038 . . . . . . . . . . . 12 (1 ∈ ℤ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼)))))
157155, 156ax-mp 5 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))))
15821adantllr 754 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)‘𝑛) ∈ ℝ)
159108adantlr 750 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑃𝑛) ∈ ℝ)
160159adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → (𝑃𝑛) ∈ ℝ)
16144remetdval 22532 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑘)‘𝑛) ∈ ℝ ∧ (𝑃𝑛) ∈ ℝ) → (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) = (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))))
162158, 160, 161syl2anc 692 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) = (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))))
163162breq1d 4633 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(#‘𝐼)))))
16439, 163sylan2 491 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(#‘𝐼)))))
165164anassrs 679 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(#‘𝐼)))))
166165ralbidva 2981 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(#‘𝐼)))))
167166rexbidva 3044 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(#‘𝐼)))))
168157, 167syl5bbr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(#‘𝐼)))))
169154, 168mpbird 247 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))))
170169ralrimiva 2962 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → ∀𝑛𝐼𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))))
1716rexuz3 14038 . . . . . . . . . 10 (1 ∈ ℤ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼)))))
172155, 171ax-mp 5 . . . . . . . . 9 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))))
173 rexfiuz 14037 . . . . . . . . . 10 (𝐼 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∀𝑛𝐼𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼)))))
174144, 173syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∀𝑛𝐼𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼)))))
175172, 174syl5bb 272 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) ↔ ∀𝑛𝐼𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼)))))
176170, 175mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))))
17725ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ Fin)
178 simplrr 800 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ≠ ∅)
179 eldifsn 4294 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
180177, 178, 179sylanbrc 697 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ (Fin ∖ {∅}))
18114adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → 𝐹:ℕ⟶𝑋)
182181ffvelrnda 6325 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
183116ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑃𝑋)
184150adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (𝑥 / (√‘(#‘𝐼))) ∈ ℝ+)
18516, 44rrndstprj2 33301 . . . . . . . . . . . . . 14 (((𝐼 ∈ (Fin ∖ {∅}) ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) ∧ ((𝑥 / (√‘(#‘𝐼))) ∈ ℝ+ ∧ ∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < ((𝑥 / (√‘(#‘𝐼))) · (√‘(#‘𝐼))))
186185expr 642 . . . . . . . . . . . . 13 (((𝐼 ∈ (Fin ∖ {∅}) ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) ∧ (𝑥 / (√‘(#‘𝐼))) ∈ ℝ+) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < ((𝑥 / (√‘(#‘𝐼))) · (√‘(#‘𝐼)))))
187180, 182, 183, 184, 186syl31anc 1326 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < ((𝑥 / (√‘(#‘𝐼))) · (√‘(#‘𝐼)))))
188 simplrl 799 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ+)
189188rpcnd 11834 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℂ)
190149adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (√‘(#‘𝐼)) ∈ ℝ+)
191190rpcnd 11834 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (√‘(#‘𝐼)) ∈ ℂ)
192190rpne0d 11837 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (√‘(#‘𝐼)) ≠ 0)
193189, 191, 192divcan1d 10762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → ((𝑥 / (√‘(#‘𝐼))) · (√‘(#‘𝐼))) = 𝑥)
194193breq2d 4635 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘)(ℝn𝐼)𝑃) < ((𝑥 / (√‘(#‘𝐼))) · (√‘(#‘𝐼))) ↔ ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
195187, 194sylibd 229 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
19639, 195sylan2 491 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
197196anassrs 679 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
198197ralimdva 2958 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
199198reximdva 3013 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(#‘𝐼))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
200176, 199mpd 15 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
201200expr 642 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (𝐼 ≠ ∅ → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
202140, 201pm2.61dne 2876 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
203202ralrimiva 2962 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
204 rrncms.3 . . . 4 𝐽 = (MetOpen‘(ℝn𝐼))
205204, 29, 6, 30, 31, 14lmmbrf 23000 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)))
206116, 203, 205mpbir2and 956 . 2 (𝜑𝐹(⇝𝑡𝐽)𝑃)
207 releldm 5328 . 2 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡𝐽))
2081, 206, 207sylancr 694 1 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2908  ∃wrex 2909  Vcvv 3190   ∖ cdif 3557  ∅c0 3897  {csn 4155   class class class wbr 4623   ↦ cmpt 4683   × cxp 5082  dom cdm 5084   ↾ cres 5086   ∘ ccom 5088  Rel wrel 5089   Fn wfn 5852  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615   ↑𝑚 cmap 7817  Fincfn 7915  ℝcr 9895  0cc0 9896  1c1 9897   · cmul 9901   < clt 10034   ≤ cle 10035   − cmin 10226   / cdiv 10644  ℕcn 10980  2c2 11030  ℤcz 11337  ℤ≥cuz 11647  ℝ+crp 11792  ↑cexp 12816  #chash 13073  √csqrt 13923  abscabs 13924   ⇝ cli 14165  Σcsu 14366  ∞Metcxmt 19671  Metcme 19672  MetOpencmopn 19676  ⇝𝑡clm 20970  Caucca 22991  ℝncrrn 33295 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ico 12139  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-top 20639  df-topon 20656  df-bases 20690  df-lm 20973  df-cau 22994  df-rrn 33296 This theorem is referenced by:  rrncms  33303
 Copyright terms: Public domain W3C validator