Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrncmslem Structured version   Visualization version   GIF version

Theorem rrncmslem 33942
Description: Lemma for rrncms 33943. (Contributed by Jeff Madsen, 6-Jun-2014.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrndstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
rrncms.3 𝐽 = (MetOpen‘(ℝn𝐼))
rrncms.4 (𝜑𝐼 ∈ Fin)
rrncms.5 (𝜑𝐹 ∈ (Cau‘(ℝn𝐼)))
rrncms.6 (𝜑𝐹:ℕ⟶𝑋)
rrncms.7 𝑃 = (𝑚𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚))))
Assertion
Ref Expression
rrncmslem (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Distinct variable groups:   𝑚,𝐼   𝑡,𝑚,𝐹
Allowed substitution hints:   𝜑(𝑡,𝑚)   𝑃(𝑡,𝑚)   𝐼(𝑡)   𝐽(𝑡,𝑚)   𝑀(𝑡,𝑚)   𝑋(𝑡,𝑚)

Proof of Theorem rrncmslem
Dummy variables 𝑘 𝑛 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmrel 21234 . 2 Rel (⇝𝑡𝐽)
2 fvex 6360 . . . . . . . 8 ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚))) ∈ V
3 rrncms.7 . . . . . . . 8 𝑃 = (𝑚𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚))))
42, 3fnmpti 6181 . . . . . . 7 𝑃 Fn 𝐼
54a1i 11 . . . . . 6 (𝜑𝑃 Fn 𝐼)
6 nnuz 11914 . . . . . . . 8 ℕ = (ℤ‘1)
7 1zzd 11598 . . . . . . . 8 ((𝜑𝑛𝐼) → 1 ∈ ℤ)
8 fveq2 6350 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑘 → (𝐹𝑡) = (𝐹𝑘))
98fveq1d 6352 . . . . . . . . . . . . . . 15 (𝑡 = 𝑘 → ((𝐹𝑡)‘𝑛) = ((𝐹𝑘)‘𝑛))
10 eqid 2758 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) = (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))
11 fvex 6360 . . . . . . . . . . . . . . 15 ((𝐹𝑘)‘𝑛) ∈ V
129, 10, 11fvmpt 6442 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) = ((𝐹𝑘)‘𝑛))
1312adantl 473 . . . . . . . . . . . . 13 (((𝜑𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) = ((𝐹𝑘)‘𝑛))
14 rrncms.6 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℕ⟶𝑋)
1514ffvelrnda 6520 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
16 rrnval.1 . . . . . . . . . . . . . . . . 17 𝑋 = (ℝ ↑𝑚 𝐼)
1715, 16syl6eleq 2847 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (ℝ ↑𝑚 𝐼))
18 elmapi 8043 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (ℝ ↑𝑚 𝐼) → (𝐹𝑘):𝐼⟶ℝ)
1917, 18syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘):𝐼⟶ℝ)
2019ffvelrnda 6520 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛𝐼) → ((𝐹𝑘)‘𝑛) ∈ ℝ)
2120an32s 881 . . . . . . . . . . . . 13 (((𝜑𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)‘𝑛) ∈ ℝ)
2213, 21eqeltrd 2837 . . . . . . . . . . . 12 (((𝜑𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) ∈ ℝ)
2322recnd 10258 . . . . . . . . . . 11 (((𝜑𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) ∈ ℂ)
24 rrncms.5 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (Cau‘(ℝn𝐼)))
25 rrncms.4 . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ Fin)
2616rrnmet 33939 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝn𝐼) ∈ (Met‘𝑋))
28 metxmet 22338 . . . . . . . . . . . . . . . 16 ((ℝn𝐼) ∈ (Met‘𝑋) → (ℝn𝐼) ∈ (∞Met‘𝑋))
2927, 28syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℝn𝐼) ∈ (∞Met‘𝑋))
30 1zzd 11598 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℤ)
31 eqidd 2759 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
32 eqidd 2759 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
336, 29, 30, 31, 32, 14iscauf 23276 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ∈ (Cau‘(ℝn𝐼)) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥))
3424, 33mpbid 222 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥)
3534adantr 472 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥)
3625ad3antrrr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐼 ∈ Fin)
37 simpllr 817 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑛𝐼)
3814ad3antrrr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶𝑋)
39 eluznn 11949 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
4039adantll 752 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
4138, 40ffvelrnd 6521 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
42 simplr 809 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
4338, 42ffvelrnd 6521 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ 𝑋)
44 rrndstprj1.1 . . . . . . . . . . . . . . . . . . . . 21 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
4516, 44rrndstprj1 33940 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ Fin ∧ 𝑛𝐼) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑘)(ℝn𝐼)(𝐹𝑗)))
4636, 37, 41, 43, 45syl22anc 1478 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑘)(ℝn𝐼)(𝐹𝑗)))
4727ad3antrrr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℝn𝐼) ∈ (Met‘𝑋))
48 metsym 22354 . . . . . . . . . . . . . . . . . . . 20 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)(ℝn𝐼)(𝐹𝑗)) = ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)))
4947, 41, 43, 48syl3anc 1477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)(ℝn𝐼)(𝐹𝑗)) = ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)))
5046, 49breqtrd 4828 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)))
5150adantllr 757 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)))
5244remet 22792 . . . . . . . . . . . . . . . . . . . . 21 𝑀 ∈ (Met‘ℝ)
5352a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑀 ∈ (Met‘ℝ))
54 simpll 807 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝜑𝑛𝐼))
5554, 40, 21syl2anc 696 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)‘𝑛) ∈ ℝ)
5614ffvelrnda 6520 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝑋)
5756, 16syl6eleq 2847 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ ↑𝑚 𝐼))
58 elmapi 8043 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑗) ∈ (ℝ ↑𝑚 𝐼) → (𝐹𝑗):𝐼⟶ℝ)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗):𝐼⟶ℝ)
6059ffvelrnda 6520 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛𝐼) → ((𝐹𝑗)‘𝑛) ∈ ℝ)
6160an32s 881 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗)‘𝑛) ∈ ℝ)
6261adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑗)‘𝑛) ∈ ℝ)
63 metcl 22336 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ (Met‘ℝ) ∧ ((𝐹𝑘)‘𝑛) ∈ ℝ ∧ ((𝐹𝑗)‘𝑛) ∈ ℝ) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ∈ ℝ)
6453, 55, 62, 63syl3anc 1477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ∈ ℝ)
6564adantllr 757 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ∈ ℝ)
66 metcl 22336 . . . . . . . . . . . . . . . . . . . 20 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∈ ℝ)
6747, 43, 41, 66syl3anc 1477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∈ ℝ)
6867adantllr 757 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∈ ℝ)
69 rpre 12030 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7069adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
7170ad2antrr 764 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
72 lelttr 10318 . . . . . . . . . . . . . . . . . 18 (((((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ∈ ℝ ∧ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∧ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7365, 68, 71, 72syl3anc 1477 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) ≤ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) ∧ ((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7451, 73mpand 713 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7574ralimdva 3098 . . . . . . . . . . . . . . 15 ((((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7675reximdva 3153 . . . . . . . . . . . . . 14 (((𝜑𝑛𝐼) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7776ralimdva 3098 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥))
7844remetdval 22791 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑘)‘𝑛) ∈ ℝ ∧ ((𝐹𝑗)‘𝑛) ∈ ℝ) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) = (abs‘(((𝐹𝑘)‘𝑛) − ((𝐹𝑗)‘𝑛))))
7955, 62, 78syl2anc 696 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) = (abs‘(((𝐹𝑘)‘𝑛) − ((𝐹𝑗)‘𝑛))))
8040, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) = ((𝐹𝑘)‘𝑛))
81 fveq2 6350 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑗 → (𝐹𝑡) = (𝐹𝑗))
8281fveq1d 6352 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑗 → ((𝐹𝑡)‘𝑛) = ((𝐹𝑗)‘𝑛))
83 fvex 6360 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑗)‘𝑛) ∈ V
8482, 10, 83fvmpt 6442 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗) = ((𝐹𝑗)‘𝑛))
8584ad2antlr 765 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗) = ((𝐹𝑗)‘𝑛))
8680, 85oveq12d 6829 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗)) = (((𝐹𝑘)‘𝑛) − ((𝐹𝑗)‘𝑛)))
8786fveq2d 6354 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) = (abs‘(((𝐹𝑘)‘𝑛) − ((𝐹𝑗)‘𝑛))))
8879, 87eqtr4d 2795 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) = (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))))
8988breq1d 4812 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥 ↔ (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9089ralbidva 3121 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝐼) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9190rexbidva 3185 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐼) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9291ralbidv 3122 . . . . . . . . . . . . 13 ((𝜑𝑛𝐼) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀((𝐹𝑗)‘𝑛)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9377, 92sylibd 229 . . . . . . . . . . . 12 ((𝜑𝑛𝐼) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑗)(ℝn𝐼)(𝐹𝑘)) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥))
9435, 93mpd 15 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑗))) < 𝑥)
95 nnex 11216 . . . . . . . . . . . . 13 ℕ ∈ V
9695mptex 6648 . . . . . . . . . . . 12 (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ∈ V
9796a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ∈ V)
986, 23, 94, 97caucvg 14606 . . . . . . . . . 10 ((𝜑𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ∈ dom ⇝ )
99 climdm 14482 . . . . . . . . . 10 ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ∈ dom ⇝ ↔ (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ⇝ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
10098, 99sylib 208 . . . . . . . . 9 ((𝜑𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ⇝ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
101 fveq2 6350 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝐹𝑡)‘𝑚) = ((𝐹𝑡)‘𝑛))
102101mpteq2dv 4895 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚)) = (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)))
103102fveq2d 6354 . . . . . . . . . . 11 (𝑚 = 𝑛 → ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚))) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
104 fvex 6360 . . . . . . . . . . 11 ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))) ∈ V
105103, 3, 104fvmpt 6442 . . . . . . . . . 10 (𝑛𝐼 → (𝑃𝑛) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
106105adantl 473 . . . . . . . . 9 ((𝜑𝑛𝐼) → (𝑃𝑛) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))))
107100, 106breqtrrd 4830 . . . . . . . 8 ((𝜑𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ⇝ (𝑃𝑛))
1086, 7, 107, 22climrecl 14511 . . . . . . 7 ((𝜑𝑛𝐼) → (𝑃𝑛) ∈ ℝ)
109108ralrimiva 3102 . . . . . 6 (𝜑 → ∀𝑛𝐼 (𝑃𝑛) ∈ ℝ)
110 ffnfv 6549 . . . . . 6 (𝑃:𝐼⟶ℝ ↔ (𝑃 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑃𝑛) ∈ ℝ))
1115, 109, 110sylanbrc 701 . . . . 5 (𝜑𝑃:𝐼⟶ℝ)
112 reex 10217 . . . . . 6 ℝ ∈ V
113 elmapg 8034 . . . . . 6 ((ℝ ∈ V ∧ 𝐼 ∈ Fin) → (𝑃 ∈ (ℝ ↑𝑚 𝐼) ↔ 𝑃:𝐼⟶ℝ))
114112, 25, 113sylancr 698 . . . . 5 (𝜑 → (𝑃 ∈ (ℝ ↑𝑚 𝐼) ↔ 𝑃:𝐼⟶ℝ))
115111, 114mpbird 247 . . . 4 (𝜑𝑃 ∈ (ℝ ↑𝑚 𝐼))
116115, 16syl6eleqr 2848 . . 3 (𝜑𝑃𝑋)
117 1nn 11221 . . . . . . 7 1 ∈ ℕ
11825ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ Fin)
11915adantlr 753 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
120116ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝑃𝑋)
12116rrnmval 33938 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) → ((𝐹𝑘)(ℝn𝐼)𝑃) = (√‘Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2)))
122118, 119, 120, 121syl3anc 1477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)(ℝn𝐼)𝑃) = (√‘Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2)))
123 simplrr 820 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 = ∅)
124123sumeq1d 14628 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2) = Σ𝑦 ∈ ∅ ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2))
125 sum0 14649 . . . . . . . . . . . . 13 Σ𝑦 ∈ ∅ ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2) = 0
126124, 125syl6eq 2808 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2) = 0)
127126fveq2d 6354 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → (√‘Σ𝑦𝐼 ((((𝐹𝑘)‘𝑦) − (𝑃𝑦))↑2)) = (√‘0))
128122, 127eqtrd 2792 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)(ℝn𝐼)𝑃) = (√‘0))
129 sqrt0 14179 . . . . . . . . . 10 (√‘0) = 0
130128, 129syl6eq 2808 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)(ℝn𝐼)𝑃) = 0)
131 simplrl 819 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ+)
132131rpgt0d 12066 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 0 < 𝑥)
133130, 132eqbrtrd 4824 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
134133ralrimiva 3102 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) → ∀𝑘 ∈ ℕ ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
135 fveq2 6350 . . . . . . . . . 10 (𝑗 = 1 → (ℤ𝑗) = (ℤ‘1))
136135, 6syl6eqr 2810 . . . . . . . . 9 (𝑗 = 1 → (ℤ𝑗) = ℕ)
137136raleqdv 3281 . . . . . . . 8 (𝑗 = 1 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
138137rspcev 3447 . . . . . . 7 ((1 ∈ ℕ ∧ ∀𝑘 ∈ ℕ ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
139117, 134, 138sylancr 698 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 = ∅)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
140139expr 644 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (𝐼 = ∅ → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
141 1zzd 11598 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 1 ∈ ℤ)
142 simprl 811 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → 𝑥 ∈ ℝ+)
143 simprr 813 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → 𝐼 ≠ ∅)
14425adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → 𝐼 ∈ Fin)
145 hashnncl 13347 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
146144, 145syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
147143, 146mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (♯‘𝐼) ∈ ℕ)
148147nnrpd 12061 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (♯‘𝐼) ∈ ℝ+)
149148rpsqrtcld 14347 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (√‘(♯‘𝐼)) ∈ ℝ+)
150142, 149rpdivcld 12080 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (𝑥 / (√‘(♯‘𝐼))) ∈ ℝ+)
151150adantr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑥 / (√‘(♯‘𝐼))) ∈ ℝ+)
15212adantl 473 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛))‘𝑘) = ((𝐹𝑘)‘𝑛))
153107adantlr 753 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑛)) ⇝ (𝑃𝑛))
1546, 141, 151, 152, 153climi2 14439 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(♯‘𝐼))))
155 1z 11597 . . . . . . . . . . . 12 1 ∈ ℤ
1566rexuz3 14285 . . . . . . . . . . . 12 (1 ∈ ℤ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼)))))
157155, 156ax-mp 5 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))))
15821adantllr 757 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)‘𝑛) ∈ ℝ)
159108adantlr 753 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑃𝑛) ∈ ℝ)
160159adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → (𝑃𝑛) ∈ ℝ)
16144remetdval 22791 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑘)‘𝑛) ∈ ℝ ∧ (𝑃𝑛) ∈ ℝ) → (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) = (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))))
162158, 160, 161syl2anc 696 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) = (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))))
163162breq1d 4812 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(♯‘𝐼)))))
16439, 163sylan2 492 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(♯‘𝐼)))))
165164anassrs 683 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ (abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(♯‘𝐼)))))
166165ralbidva 3121 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(♯‘𝐼)))))
167166rexbidva 3185 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(♯‘𝐼)))))
168157, 167syl5bbr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑛) − (𝑃𝑛))) < (𝑥 / (√‘(♯‘𝐼)))))
169154, 168mpbird 247 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))))
170169ralrimiva 3102 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → ∀𝑛𝐼𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))))
1716rexuz3 14285 . . . . . . . . . 10 (1 ∈ ℤ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼)))))
172155, 171ax-mp 5 . . . . . . . . 9 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))))
173 rexfiuz 14284 . . . . . . . . . 10 (𝐼 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑛𝐼𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼)))))
174144, 173syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑛𝐼𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼)))))
175172, 174syl5bb 272 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑛𝐼𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼)))))
176170, 175mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))))
17725ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ Fin)
178 simplrr 820 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ≠ ∅)
179 eldifsn 4460 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
180177, 178, 179sylanbrc 701 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ (Fin ∖ {∅}))
18114adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → 𝐹:ℕ⟶𝑋)
182181ffvelrnda 6520 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
183116ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑃𝑋)
184150adantr 472 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (𝑥 / (√‘(♯‘𝐼))) ∈ ℝ+)
18516, 44rrndstprj2 33941 . . . . . . . . . . . . . 14 (((𝐼 ∈ (Fin ∖ {∅}) ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) ∧ ((𝑥 / (√‘(♯‘𝐼))) ∈ ℝ+ ∧ ∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼))))
186185expr 644 . . . . . . . . . . . . 13 (((𝐼 ∈ (Fin ∖ {∅}) ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) ∧ (𝑥 / (√‘(♯‘𝐼))) ∈ ℝ+) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼)))))
187180, 182, 183, 184, 186syl31anc 1480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼)))))
188 simplrl 819 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ+)
189188rpcnd 12065 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℂ)
190149adantr 472 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (√‘(♯‘𝐼)) ∈ ℝ+)
191190rpcnd 12065 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (√‘(♯‘𝐼)) ∈ ℂ)
192190rpne0d 12068 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (√‘(♯‘𝐼)) ≠ 0)
193189, 191, 192divcan1d 10992 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → ((𝑥 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼))) = 𝑥)
194193breq2d 4814 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘)(ℝn𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼))) ↔ ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
195187, 194sylibd 229 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
19639, 195sylan2 492 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
197196anassrs 683 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
198197ralimdva 3098 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
199198reximdva 3153 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐼 (((𝐹𝑘)‘𝑛)𝑀(𝑃𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
200176, 199mpd 15 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+𝐼 ≠ ∅)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
201200expr 644 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (𝐼 ≠ ∅ → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥))
202140, 201pm2.61dne 3016 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
203202ralrimiva 3102 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)
204 rrncms.3 . . . 4 𝐽 = (MetOpen‘(ℝn𝐼))
205204, 29, 6, 30, 31, 14lmmbrf 23258 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)(ℝn𝐼)𝑃) < 𝑥)))
206116, 203, 205mpbir2and 995 . 2 (𝜑𝐹(⇝𝑡𝐽)𝑃)
207 releldm 5511 . 2 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡𝐽))
2081, 206, 207sylancr 698 1 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wcel 2137  wne 2930  wral 3048  wrex 3049  Vcvv 3338  cdif 3710  c0 4056  {csn 4319   class class class wbr 4802  cmpt 4879   × cxp 5262  dom cdm 5264  cres 5266  ccom 5268  Rel wrel 5269   Fn wfn 6042  wf 6043  cfv 6047  (class class class)co 6811  𝑚 cmap 8021  Fincfn 8119  cr 10125  0cc0 10126  1c1 10127   · cmul 10131   < clt 10264  cle 10265  cmin 10456   / cdiv 10874  cn 11210  2c2 11260  cz 11567  cuz 11877  +crp 12023  cexp 13052  chash 13309  csqrt 14170  abscabs 14171  cli 14412  Σcsu 14613  ∞Metcxmt 19931  Metcme 19932  MetOpencmopn 19936  𝑡clm 21230  Caucca 23249  ncrrn 33935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204  ax-addf 10205  ax-mulf 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-se 5224  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-isom 6056  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-sup 8511  df-inf 8512  df-oi 8578  df-card 8953  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-n0 11483  df-z 11568  df-uz 11878  df-q 11980  df-rp 12024  df-xneg 12137  df-xadd 12138  df-xmul 12139  df-ico 12372  df-fz 12518  df-fzo 12658  df-fl 12785  df-seq 12994  df-exp 13053  df-hash 13310  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-limsup 14399  df-clim 14416  df-rlim 14417  df-sum 14614  df-topgen 16304  df-psmet 19938  df-xmet 19939  df-met 19940  df-bl 19941  df-mopn 19942  df-top 20899  df-topon 20916  df-bases 20950  df-lm 21233  df-cau 23252  df-rrn 33936
This theorem is referenced by:  rrncms  33943
  Copyright terms: Public domain W3C validator