![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 11910 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | rexrd 10127 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ℝ*cxr 10111 ℝ+crp 11870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-un 3612 df-in 3614 df-ss 3621 df-xr 10116 df-rp 11871 |
This theorem is referenced by: ssblex 22280 metequiv2 22362 metss2lem 22363 methaus 22372 met1stc 22373 met2ndci 22374 metcnp 22393 metcnpi3 22398 metustexhalf 22408 blval2 22414 metuel2 22417 nmoi2 22581 metdcnlem 22686 metdscnlem 22705 metnrmlem2 22710 metnrmlem3 22711 cnheibor 22801 cnllycmp 22802 lebnumlem3 22809 nmoleub2lem 22960 nmhmcn 22966 iscfil2 23110 cfil3i 23113 iscfil3 23117 iscmet3lem2 23136 caubl 23152 caublcls 23153 relcmpcmet 23161 bcthlem2 23168 bcthlem4 23170 bcthlem5 23171 ellimc3 23688 ftc1a 23845 ulmdvlem1 24199 psercnlem2 24223 psercn 24225 pserdvlem2 24227 pserdv 24228 efopn 24449 logccv 24454 efrlim 24741 lgamucov 24809 ftalem3 24846 logexprlim 24995 pntpbnd1a 25319 pntleme 25342 pntlem3 25343 pntleml 25345 ubthlem1 27854 ubthlem2 27855 tpr2rico 30086 xrmulc1cn 30104 omssubadd 30490 sgnmulrp2 30733 ptrecube 33539 poimirlem29 33568 heicant 33574 ftc1anclem6 33620 ftc1anclem7 33621 sstotbnd2 33703 equivtotbnd 33707 totbndbnd 33718 cntotbnd 33725 heibor1lem 33738 heiborlem3 33742 heiborlem6 33745 heiborlem8 33747 supxrge 39867 infrpge 39880 infleinflem1 39899 stoweid 40598 qndenserrnbl 40833 sge0rpcpnf 40956 sge0xaddlem1 40968 |
Copyright terms: Public domain | W3C validator |