MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum2 Structured version   Visualization version   GIF version

Theorem rpvmasum2 25422
Description: A partial result along the lines of rpvmasum 25436. The sum of the von Mangoldt function over those integers 𝑛𝐴 (mod 𝑁) is asymptotic to (1 − 𝑀)(log𝑥 / ϕ(𝑥)) + 𝑂(1), where 𝑀 is the number of non-principal Dirichlet characters with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Our goal is to show this set is empty. Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
rpvmasum2.u 𝑈 = (Unit‘𝑍)
rpvmasum2.b (𝜑𝐴𝑈)
rpvmasum2.t 𝑇 = (𝐿 “ {𝐴})
rpvmasum2.z1 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
Assertion
Ref Expression
rpvmasum2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝑓, 1   𝐴,𝑓,𝑚,𝑥,𝑦   𝑓,𝐺   𝑓,𝑁,𝑚,𝑛,𝑥,𝑦   𝜑,𝑓,𝑚,𝑛,𝑥   𝑇,𝑚,𝑛,𝑥,𝑦   𝑈,𝑚,𝑛,𝑥   𝑓,𝑊,𝑥   𝑓,𝑍,𝑚,𝑛,𝑥,𝑦   𝐷,𝑓,𝑚,𝑛,𝑥,𝑦   𝑓,𝐿,𝑚,𝑛,𝑥,𝑦   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑦)   𝑇(𝑓)   𝑈(𝑦,𝑓)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝑊(𝑦,𝑚,𝑛)

Proof of Theorem rpvmasum2
Dummy variables 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.a . . . . . . 7 (𝜑𝑁 ∈ ℕ)
21adantr 466 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℕ)
3 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
4 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
53, 4dchrfi 25201 . . . . . 6 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
62, 5syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ Fin)
7 fzfid 12980 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (1...(⌊‘𝑥)) ∈ Fin)
8 rpvmasum.z . . . . . . . . . . . . 13 𝑍 = (ℤ/nℤ‘𝑁)
9 eqid 2771 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
10 simpr 471 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑓𝐷)
113, 8, 4, 9, 10dchrf 25188 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
12 rpvmasum2.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑍)
139, 12unitss 18868 . . . . . . . . . . . . . 14 𝑈 ⊆ (Base‘𝑍)
14 rpvmasum2.b . . . . . . . . . . . . . 14 (𝜑𝐴𝑈)
1513, 14sseldi 3750 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ (Base‘𝑍))
1615adantr 466 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝐴 ∈ (Base‘𝑍))
1711, 16ffvelrnd 6503 . . . . . . . . . . 11 ((𝜑𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
1817cjcld 14144 . . . . . . . . . 10 ((𝜑𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
1918adantlr 694 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
2019adantrl 695 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (∗‘(𝑓𝐴)) ∈ ℂ)
2111adantlr 694 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
2221adantlr 694 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
231nnnn0d 11553 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
24 rpvmasum.l . . . . . . . . . . . . . . . 16 𝐿 = (ℤRHom‘𝑍)
258, 9, 24znzrhfo 20111 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
26 fof 6256 . . . . . . . . . . . . . . 15 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
2723, 25, 263syl 18 . . . . . . . . . . . . . 14 (𝜑𝐿:ℤ⟶(Base‘𝑍))
2827adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
29 elfzelz 12549 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
30 ffvelrn 6500 . . . . . . . . . . . . 13 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑛 ∈ ℤ) → (𝐿𝑛) ∈ (Base‘𝑍))
3128, 29, 30syl2an 583 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
3231adantr 466 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝐿𝑛) ∈ (Base‘𝑍))
3322, 32ffvelrnd 6503 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
3433anasss 457 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
35 elfznn 12577 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
3635adantl 467 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
37 vmacl 25065 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
3836, 37syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
3938, 36nndivred 11271 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4039recnd 10270 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4140adantrr 696 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4234, 41mulcld 10262 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
4320, 42mulcld 10262 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
4443anass1rs 634 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
457, 44fsumcl 14672 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
46 relogcl 24543 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
4746adantl 467 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
4847recnd 10270 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
4948adantr 466 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (log‘𝑥) ∈ ℂ)
50 ax-1cn 10196 . . . . . . 7 1 ∈ ℂ
51 neg1cn 11326 . . . . . . . 8 -1 ∈ ℂ
52 0cn 10234 . . . . . . . 8 0 ∈ ℂ
5351, 52keepel 4294 . . . . . . 7 if(𝑓𝑊, -1, 0) ∈ ℂ
5450, 53keepel 4294 . . . . . 6 if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ
55 mulcl 10222 . . . . . 6 (((log‘𝑥) ∈ ℂ ∧ if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
5649, 54, 55sylancl 574 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
576, 45, 56fsumsub 14727 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
5842anass1rs 634 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
597, 58fsumcl 14672 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
6019, 59, 56subdid 10688 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))))
617, 19, 58fsummulc2 14723 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
6254a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ)
6319, 49, 62mul12d 10447 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
64 ovif2 6885 . . . . . . . . . 10 ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)))
65 fveq1 6331 . . . . . . . . . . . . . . . . 17 (𝑓 = 1 → (𝑓𝐴) = ( 1𝐴))
66 rpvmasum2.1 . . . . . . . . . . . . . . . . . 18 1 = (0g𝐺)
671ad2antrr 705 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑁 ∈ ℕ)
6814ad2antrr 705 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝐴𝑈)
693, 8, 66, 12, 67, 68dchr1 25203 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ( 1𝐴) = 1)
7065, 69sylan9eqr 2827 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑓𝐴) = 1)
7170fveq2d 6336 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = (∗‘1))
72 1re 10241 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
73 cjre 14087 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → (∗‘1) = 1)
7472, 73ax-mp 5 . . . . . . . . . . . . . . 15 (∗‘1) = 1
7571, 74syl6eq 2821 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = 1)
7675oveq1d 6808 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = (1 · 1))
77 1t1e1 11377 . . . . . . . . . . . . 13 (1 · 1) = 1
7876, 77syl6eq 2821 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = 1)
7978ifeq1da 4255 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))))
80 df-ne 2944 . . . . . . . . . . . . 13 (𝑓1 ↔ ¬ 𝑓 = 1 )
81 ovif2 6885 . . . . . . . . . . . . . 14 ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0))
82 simplll 758 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → 𝜑)
83 rpvmasum2.z1 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
8483fveq2d 6336 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
8582, 84sylan 569 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
863, 8, 4dchrmhm 25187 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
87 simpr 471 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓𝐷)
8886, 87sseldi 3750 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
89 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (mulGrp‘𝑍) = (mulGrp‘𝑍)
90 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1r𝑍) = (1r𝑍)
9189, 90ringidval 18711 . . . . . . . . . . . . . . . . . . . . . . . 24 (1r𝑍) = (0g‘(mulGrp‘𝑍))
92 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
93 cnfld1 19986 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (1r‘ℂfld)
9492, 93ringidval 18711 . . . . . . . . . . . . . . . . . . . . . . . 24 1 = (0g‘(mulGrp‘ℂfld))
9591, 94mhm0 17551 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r𝑍)) = 1)
9688, 95syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓‘(1r𝑍)) = 1)
9796ad2antrr 705 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓‘(1r𝑍)) = 1)
9885, 97eqtrd 2805 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = 1)
9998fveq2d 6336 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = (∗‘1))
10099, 74syl6eq 2821 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = 1)
101100oveq1d 6808 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = (1 · -1))
10251mulid2i 10245 . . . . . . . . . . . . . . . . 17 (1 · -1) = -1
103101, 102syl6eq 2821 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = -1)
104103ifeq1da 4255 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)))
10519adantr 466 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → (∗‘(𝑓𝐴)) ∈ ℂ)
106105mul01d 10437 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · 0) = 0)
107106ifeq2d 4244 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
108104, 107eqtrd 2805 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
10981, 108syl5eq 2817 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
11080, 109sylan2br 582 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ ¬ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
111110ifeq2da 4256 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , 1, ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
11279, 111eqtrd 2805 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
11364, 112syl5eq 2817 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
114113oveq2d 6809 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11563, 114eqtrd 2805 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11661, 115oveq12d 6811 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
11760, 116eqtrd 2805 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
118117sumeq2dv 14641 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
119 fzfid 12980 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
120 inss1 3981 . . . . . . . . 9 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
121 ssfi 8336 . . . . . . . . 9 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
122119, 120, 121sylancl 574 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1232phicld 15684 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
124123nncnd 11238 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
125120a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
126125sselda 3752 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑛 ∈ (1...(⌊‘𝑥)))
127126, 40syldan 579 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
128122, 124, 127fsummulc2 14723 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)))
129124adantr 466 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ϕ‘𝑁) ∈ ℂ)
130129, 40mulcld 10262 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
131126, 130syldan 579 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
132131ralrimiva 3115 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
133119olcd 861 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin))
134 sumss2 14665 . . . . . . . 8 (((((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)) ∧ ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) ∧ ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
135125, 132, 133, 134syl21anc 1475 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
136 elin 3947 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑛𝑇))
137136baib 525 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
138137adantl 467 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
139 rpvmasum2.t . . . . . . . . . . . . 13 𝑇 = (𝐿 “ {𝐴})
140139eleq2i 2842 . . . . . . . . . . . 12 (𝑛𝑇𝑛 ∈ (𝐿 “ {𝐴}))
141 ffn 6185 . . . . . . . . . . . . . 14 (𝐿:ℤ⟶(Base‘𝑍) → 𝐿 Fn ℤ)
14228, 141syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿 Fn ℤ)
143 fniniseg 6481 . . . . . . . . . . . . . 14 (𝐿 Fn ℤ → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝑛 ∈ ℤ ∧ (𝐿𝑛) = 𝐴)))
144143baibd 529 . . . . . . . . . . . . 13 ((𝐿 Fn ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
145142, 29, 144syl2an 583 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
146140, 145syl5bb 272 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛𝑇 ↔ (𝐿𝑛) = 𝐴))
147138, 146bitr2d 269 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐿𝑛) = 𝐴𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)))
14840mul02d 10436 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 · ((Λ‘𝑛) / 𝑛)) = 0)
149147, 148ifbieq2d 4250 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
150 ovif 6884 . . . . . . . . . 10 (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛)))
1511ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
152151, 5syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐷 ∈ Fin)
15319adantlr 694 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
15433, 153mulcld 10262 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) ∈ ℂ)
155152, 40, 154fsummulc1 14724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)))
15614ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴𝑈)
1573, 4, 8, 9, 12, 151, 31, 156sum2dchr 25220 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) = if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0))
158157oveq1d 6808 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)))
15940adantr 466 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
160 mulass 10226 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))))
161 mul12 10404 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
162160, 161eqtrd 2805 . . . . . . . . . . . . 13 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
16333, 153, 159, 162syl3anc 1476 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
164163sumeq2dv 14641 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
165155, 158, 1643eqtr3d 2813 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
166150, 165syl5eqr 2819 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
167149, 166eqtr3d 2807 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
168167sumeq2dv 14641 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
169128, 135, 1683eqtrd 2809 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
170119, 6, 43fsumcom 14714 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
171169, 170eqtrd 2805 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
1723dchrabl 25200 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
173 ablgrp 18405 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1744, 66grpidcl 17658 . . . . . . . . . 10 (𝐺 ∈ Grp → 1𝐷)
1752, 172, 173, 1744syl 19 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1𝐷)
17648mulid1d 10259 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥))
177176, 48eqeltrd 2850 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) ∈ ℂ)
178 iftrue 4231 . . . . . . . . . . 11 (𝑓 = 1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = 1)
179178oveq2d 6809 . . . . . . . . . 10 (𝑓 = 1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
180179sumsn 14683 . . . . . . . . 9 (( 1𝐷 ∧ ((log‘𝑥) · 1) ∈ ℂ) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
181175, 177, 180syl2anc 573 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
182 eldifsn 4453 . . . . . . . . . . 11 (𝑓 ∈ (𝐷 ∖ { 1 }) ↔ (𝑓𝐷𝑓1 ))
183 ifnefalse 4237 . . . . . . . . . . . . . . 15 (𝑓1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
184183ad2antll 708 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
185 negeq 10475 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 1 → -if(𝑓𝑊, 1, 0) = -1)
186 negeq 10475 . . . . . . . . . . . . . . . 16 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = -0)
187 neg0 10529 . . . . . . . . . . . . . . . 16 -0 = 0
188186, 187syl6eq 2821 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = 0)
189185, 188ifsb 4238 . . . . . . . . . . . . . 14 -if(𝑓𝑊, 1, 0) = if(𝑓𝑊, -1, 0)
190184, 189syl6eqr 2823 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, 1, 0))
191190oveq2d 6809 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · -if(𝑓𝑊, 1, 0)))
19248adantr 466 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → (log‘𝑥) ∈ ℂ)
19350, 52keepel 4294 . . . . . . . . . . . . 13 if(𝑓𝑊, 1, 0) ∈ ℂ
194 mulneg2 10669 . . . . . . . . . . . . 13 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
195192, 193, 194sylancl 574 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
196191, 195eqtrd 2805 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
197182, 196sylan2b 581 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
198197sumeq2dv 14641 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)))
199 diffi 8348 . . . . . . . . . . 11 (𝐷 ∈ Fin → (𝐷 ∖ { 1 }) ∈ Fin)
2006, 199syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝐷 ∖ { 1 }) ∈ Fin)
20148adantr 466 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → (log‘𝑥) ∈ ℂ)
202 mulcl 10222 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
203201, 193, 202sylancl 574 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
204200, 203fsumneg 14726 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
205193a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → if(𝑓𝑊, 1, 0) ∈ ℂ)
206200, 48, 205fsummulc2 14723 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
207 rpvmasum2.w . . . . . . . . . . . . . . . . 17 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
208 ssrab2 3836 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} ⊆ (𝐷 ∖ { 1 })
209207, 208eqsstri 3784 . . . . . . . . . . . . . . . 16 𝑊 ⊆ (𝐷 ∖ { 1 })
210 difss 3888 . . . . . . . . . . . . . . . 16 (𝐷 ∖ { 1 }) ⊆ 𝐷
211209, 210sstri 3761 . . . . . . . . . . . . . . 15 𝑊𝐷
212 ssfi 8336 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
2136, 211, 212sylancl 574 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ∈ Fin)
214 fsumconst 14729 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑓𝑊 1 = ((♯‘𝑊) · 1))
215213, 50, 214sylancl 574 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = ((♯‘𝑊) · 1))
216209a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ⊆ (𝐷 ∖ { 1 }))
21750a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
218217ralrimivw 3116 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ∀𝑓𝑊 1 ∈ ℂ)
219200olcd 861 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin))
220 sumss2 14665 . . . . . . . . . . . . . 14 (((𝑊 ⊆ (𝐷 ∖ { 1 }) ∧ ∀𝑓𝑊 1 ∈ ℂ) ∧ ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin)) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
221216, 218, 219, 220syl21anc 1475 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
222 hashcl 13349 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
223213, 222syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (♯‘𝑊) ∈ ℕ0)
224223nn0cnd 11555 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (♯‘𝑊) ∈ ℂ)
225224mulid1d 10259 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ((♯‘𝑊) · 1) = (♯‘𝑊))
226215, 221, 2253eqtr3d 2813 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0) = (♯‘𝑊))
227226oveq2d 6809 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (♯‘𝑊)))
228206, 227eqtr3d 2807 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (♯‘𝑊)))
229228negeqd 10477 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · (♯‘𝑊)))
230198, 204, 2293eqtrd 2809 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · (♯‘𝑊)))
231181, 230oveq12d 6811 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) + -((log‘𝑥) · (♯‘𝑊))))
23248, 224mulcld 10262 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (♯‘𝑊)) ∈ ℂ)
233177, 232negsubd 10600 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (((log‘𝑥) · 1) + -((log‘𝑥) · (♯‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
234231, 233eqtrd 2805 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
235 disjdif 4182 . . . . . . . 8 ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅
236235a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅)
237 undif2 4186 . . . . . . . 8 ({ 1 } ∪ (𝐷 ∖ { 1 })) = ({ 1 } ∪ 𝐷)
238175snssd 4475 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → { 1 } ⊆ 𝐷)
239 ssequn1 3934 . . . . . . . . 9 ({ 1 } ⊆ 𝐷 ↔ ({ 1 } ∪ 𝐷) = 𝐷)
240238, 239sylib 208 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∪ 𝐷) = 𝐷)
241237, 240syl5req 2818 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐷 = ({ 1 } ∪ (𝐷 ∖ { 1 })))
242236, 241, 6, 56fsumsplit 14679 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
24348, 217, 224subdid 10688 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
244234, 242, 2433eqtr4rd 2816 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) = Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
245171, 244oveq12d 6811 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
24657, 118, 2453eqtr4d 2815 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
247246mpteq2dva 4878 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
248 rpssre 12046 . . . 4 + ⊆ ℝ
249248a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
2501, 5syl 17 . . 3 (𝜑𝐷 ∈ Fin)
25117adantlr 694 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
252251cjcld 14144 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
25359, 56subcld 10594 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
254252, 253mulcld 10262 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
255254anasss 457 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑓𝐷)) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
25618adantr 466 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (∗‘(𝑓𝐴)) ∈ ℂ)
257253an32s 631 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
258 o1const 14558 . . . . 5 ((ℝ+ ⊆ ℝ ∧ (∗‘(𝑓𝐴)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
259248, 18, 258sylancr 575 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
260 fveq1 6331 . . . . . . . . . . . 12 (𝑓 = 1 → (𝑓‘(𝐿𝑛)) = ( 1 ‘(𝐿𝑛)))
261260oveq1d 6808 . . . . . . . . . . 11 (𝑓 = 1 → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
262261sumeq2sdv 14643 . . . . . . . . . 10 (𝑓 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
263262, 179oveq12d 6811 . . . . . . . . 9 (𝑓 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
264263adantl 467 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
26546recnd 10270 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
266265mulid1d 10259 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘𝑥) · 1) = (log‘𝑥))
267266oveq2d 6809 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
268264, 267sylan9eq 2825 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
269268mpteq2dva 4878 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
2708, 24, 1, 3, 4, 66rpvmasumlem 25397 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
271270ad2antrr 705 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
272269, 271eqeltrd 2850 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
273183oveq2d 6809 . . . . . . . . . 10 (𝑓1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · if(𝑓𝑊, -1, 0)))
274273oveq2d 6809 . . . . . . . . 9 (𝑓1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))))
27548adantlr 694 . . . . . . . . . . . . . . 15 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
276 mulcom 10224 . . . . . . . . . . . . . . 15 (((log‘𝑥) ∈ ℂ ∧ -1 ∈ ℂ) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
277275, 51, 276sylancl 574 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
278275mulm1d 10684 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (-1 · (log‘𝑥)) = -(log‘𝑥))
279277, 278eqtrd 2805 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = -(log‘𝑥))
280275mul01d 10437 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · 0) = 0)
281279, 280ifeq12d 4245 . . . . . . . . . . . 12 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0)) = if(𝑓𝑊, -(log‘𝑥), 0))
282 ovif2 6885 . . . . . . . . . . . 12 ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0))
283 negeq 10475 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = (log‘𝑥) → -if(𝑓𝑊, (log‘𝑥), 0) = -(log‘𝑥))
284 negeq 10475 . . . . . . . . . . . . . 14 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = -0)
285284, 187syl6eq 2821 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = 0)
286283, 285ifsb 4238 . . . . . . . . . . . 12 -if(𝑓𝑊, (log‘𝑥), 0) = if(𝑓𝑊, -(log‘𝑥), 0)
287281, 282, 2863eqtr4g 2830 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, (log‘𝑥), 0))
288287oveq2d 6809 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)))
28959an32s 631 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
290 ifcl 4269 . . . . . . . . . . . 12 (((log‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
291275, 52, 290sylancl 574 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
292289, 291subnegd 10601 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
293288, 292eqtrd 2805 . . . . . . . . 9 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
294274, 293sylan9eqr 2827 . . . . . . . 8 ((((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) ∧ 𝑓1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
295294an32s 631 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
296295mpteq2dva 4878 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))))
2971ad2antrr 705 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑁 ∈ ℕ)
298 simplr 752 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓𝐷)
299 simpr 471 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓1 )
300 eqid 2771 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))
3018, 24, 297, 3, 4, 66, 298, 299, 300dchrmusumlema 25403 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
3021adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑁 ∈ ℕ)
303302ad2antrr 705 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
304298adantr 466 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓𝐷)
305 simplr 752 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓1 )
306 simprl 754 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
307 simprrl 766 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
308 simprrr 767 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
3098, 24, 303, 3, 4, 66, 304, 305, 300, 306, 307, 308, 207dchrvmaeq0 25414 . . . . . . . . . . 11 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑓𝑊𝑡 = 0))
310 ifbi 4246 . . . . . . . . . . . . 13 ((𝑓𝑊𝑡 = 0) → if(𝑓𝑊, (log‘𝑥), 0) = if(𝑡 = 0, (log‘𝑥), 0))
311310oveq2d 6809 . . . . . . . . . . . 12 ((𝑓𝑊𝑡 = 0) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0)))
312311mpteq2dv 4879 . . . . . . . . . . 11 ((𝑓𝑊𝑡 = 0) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
313309, 312syl 17 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
3148, 24, 303, 3, 4, 66, 304, 305, 300, 306, 307, 308dchrvmasumif 25413 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
315313, 314eqeltrd 2850 . . . . . . . . 9 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
316315rexlimdvaa 3180 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
317316exlimdv 2013 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
318301, 317mpd 15 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
319296, 318eqeltrd 2850 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
320272, 319pm2.61dane 3030 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
321256, 257, 259, 320o1mul2 14563 . . 3 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
322249, 250, 255, 321fsumo1 14751 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
323247, 322eqeltrrd 2851 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 834  w3a 1071   = wceq 1631  wex 1852  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063  ifcif 4225  {csn 4316   class class class wbr 4786  cmpt 4863  ccnv 5248  cima 5252   Fn wfn 6026  wf 6027  ontowfo 6029  cfv 6031  (class class class)co 6793  Fincfn 8109  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  +∞cpnf 10273  cle 10277  cmin 10468  -cneg 10469   / cdiv 10886  cn 11222  0cn0 11494  cz 11579  cuz 11888  +crp 12035  [,)cico 12382  ...cfz 12533  cfl 12799  seqcseq 13008  chash 13321  ccj 14044  abscabs 14182  cli 14423  𝑂(1)co1 14425  Σcsu 14624  ϕcphi 15676  Basecbs 16064  0gc0g 16308   MndHom cmhm 17541  Grpcgrp 17630  Abelcabl 18401  mulGrpcmgp 18697  1rcur 18709  Unitcui 18847  fldccnfld 19961  ℤRHomczrh 20063  ℤ/nczn 20066  logclog 24522  Λcvma 25039  DChrcdchr 25178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-rpss 7084  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-xnn0 11566  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-o1 14429  df-lo1 14430  df-sum 14625  df-ef 15004  df-e 15005  df-sin 15006  df-cos 15007  df-pi 15009  df-dvds 15190  df-gcd 15425  df-prm 15593  df-phi 15678  df-pc 15749  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-qus 16377  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-nsg 17800  df-eqg 17801  df-ghm 17866  df-gim 17909  df-ga 17930  df-cntz 17957  df-oppg 17983  df-od 18155  df-gex 18156  df-pgp 18157  df-lsm 18258  df-pj1 18259  df-cmn 18402  df-abl 18403  df-cyg 18487  df-dprd 18602  df-dpj 18603  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925  df-drng 18959  df-subrg 18988  df-lmod 19075  df-lss 19143  df-lsp 19185  df-sra 19387  df-rgmod 19388  df-lidl 19389  df-rsp 19390  df-2idl 19447  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-zring 20034  df-zrh 20067  df-zn 20070  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-0p 23657  df-limc 23850  df-dv 23851  df-ply 24164  df-idp 24165  df-coe 24166  df-dgr 24167  df-quot 24266  df-log 24524  df-cxp 24525  df-em 24940  df-cht 25044  df-vma 25045  df-chp 25046  df-ppi 25047  df-mu 25048  df-dchr 25179
This theorem is referenced by:  dchrisum0re  25423  rpvmasum  25436
  Copyright terms: Public domain W3C validator