![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpsqrtcld | Structured version Visualization version GIF version |
Description: The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
sqrgt0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpsqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrgt0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpsqrtcl 14213 | . 2 ⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ‘cfv 6030 ℝ+crp 12035 √csqrt 14181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8508 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 |
This theorem is referenced by: sqrtgt0d 14359 prmreclem3 15829 prmreclem5 15831 cxpsqrt 24670 divsqrtsumlem 24927 bposlem7 25236 bposlem9 25238 chtppilim 25385 chpchtlim 25389 rplogsumlem1 25394 dchrisum0fno1 25421 dchrisum0lema 25424 dchrisum0lem1b 25425 dchrisum0lem1 25426 dchrisum0lem2a 25427 dchrisum0lem2 25428 dchrisum0lem3 25429 dchrisum0 25430 pntlemb 25507 pntlemh 25509 pntlemr 25512 pntlemj 25513 pntlemk 25516 minvecolem5 28077 logdivsqrle 31068 hgt750leme 31076 rrndstprj2 33962 rrncmslem 33963 rrnequiv 33966 pellexlem4 37922 pell1qrgaplem 37963 pell14qrgapw 37966 pellqrexplicit 37967 pellqrex 37969 pellfundge 37972 pellfundgt1 37973 rmspecfund 38000 rmxycomplete 38008 stirlinglem2 40806 stirlinglem4 40808 stirlinglem13 40817 stirlinglem15 40819 stirlingr 40821 qndenserrnbllem 41028 hoiqssbllem1 41353 hoiqssbllem2 41354 hoiqssbllem3 41355 |
Copyright terms: Public domain | W3C validator |