![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rprisefaccl | Structured version Visualization version GIF version |
Description: Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018.) |
Ref | Expression |
---|---|
rprisefaccl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12046 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
2 | ax-resscn 10195 | . . 3 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3761 | . 2 ⊢ ℝ+ ⊆ ℂ |
4 | 1rp 12039 | . 2 ⊢ 1 ∈ ℝ+ | |
5 | rpmulcl 12058 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
6 | rpre 12042 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
7 | nn0re 11503 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ) | |
8 | readdcl 10221 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 + 𝑘) ∈ ℝ) | |
9 | 6, 7, 8 | syl2an 583 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ) |
10 | 6 | adantr 466 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ) |
11 | 7 | adantl 467 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ) |
12 | rpgt0 12047 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
13 | 12 | adantr 466 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 0 < 𝐴) |
14 | nn0ge0 11520 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → 0 ≤ 𝑘) | |
15 | 14 | adantl 467 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝑘) |
16 | addgtge0 10718 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝑘)) → 0 < (𝐴 + 𝑘)) | |
17 | 10, 11, 13, 15, 16 | syl22anc 1477 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 0 < (𝐴 + 𝑘)) |
18 | 9, 17 | elrpd 12072 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ+) |
19 | 3, 4, 5, 18 | risefaccllem 14950 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 class class class wbr 4786 (class class class)co 6793 ℂcc 10136 ℝcr 10137 0cc0 10138 + caddc 10141 < clt 10276 ≤ cle 10277 ℕ0cn0 11494 ℝ+crp 12035 RiseFac crisefac 14942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-prod 14843 df-risefac 14943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |