MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rprege0 Structured version   Visualization version   GIF version

Theorem rprege0 12050
Description: A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
rprege0 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))

Proof of Theorem rprege0
StepHypRef Expression
1 rpre 12042 . 2 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpge0 12048 . 2 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
31, 2jca 501 1 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2145   class class class wbr 4787  cr 10141  0cc0 10142  cle 10281  +crp 12035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-i2m1 10210  ax-1ne0 10211  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-rp 12036
This theorem is referenced by:  resqrex  14199  sqrtdiv  14214  o1fsum  14752  prmreclem3  15829  aaliou3lem3  24319  pige3  24490  rpcxpcl  24643  cxprec  24653  harmoniclbnd  24956  harmonicbnd4  24958  basellem4  25031  logfaclbnd  25168  logfacrlim  25170  logexprlim  25171  bposlem7  25236  vmadivsum  25392  dchrisum0lem2a  25427  dchrisum0lem2  25428  dchrisum0  25430  mudivsum  25440  mulogsumlem  25441  selberglem2  25456  selberg2lem  25460  pntrsumo1  25475  minvecolem3  28072
  Copyright terms: Public domain W3C validator