![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpnnen3lem | Structured version Visualization version GIF version |
Description: Lemma for rpnnen3 38101. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
rpnnen3lem | ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qbtwnre 12223 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) → ∃𝑑 ∈ ℚ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) | |
2 | simp2 1132 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → 𝑑 ∈ ℚ) | |
3 | simp3r 1245 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → 𝑑 < 𝑏) | |
4 | breq1 4807 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝑐 < 𝑏 ↔ 𝑑 < 𝑏)) | |
5 | 4 | elrab 3504 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ↔ (𝑑 ∈ ℚ ∧ 𝑑 < 𝑏)) |
6 | 2, 3, 5 | sylanbrc 701 | . . . . . 6 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → 𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
7 | simp11 1246 | . . . . . . . . 9 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → 𝑎 ∈ ℝ) | |
8 | qre 11986 | . . . . . . . . . 10 ⊢ (𝑑 ∈ ℚ → 𝑑 ∈ ℝ) | |
9 | 8 | 3ad2ant2 1129 | . . . . . . . . 9 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → 𝑑 ∈ ℝ) |
10 | simp3l 1244 | . . . . . . . . 9 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → 𝑎 < 𝑑) | |
11 | 7, 9, 10 | ltnsymd 10378 | . . . . . . . 8 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → ¬ 𝑑 < 𝑎) |
12 | 11 | intnand 1000 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → ¬ (𝑑 ∈ ℚ ∧ 𝑑 < 𝑎)) |
13 | breq1 4807 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝑐 < 𝑎 ↔ 𝑑 < 𝑎)) | |
14 | 13 | elrab 3504 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ↔ (𝑑 ∈ ℚ ∧ 𝑑 < 𝑎)) |
15 | 12, 14 | sylnibr 318 | . . . . . 6 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → ¬ 𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) |
16 | nelne1 3028 | . . . . . 6 ⊢ ((𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ∧ ¬ 𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) | |
17 | 6, 15, 16 | syl2anc 696 | . . . . 5 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) |
18 | 17 | necomd 2987 | . . . 4 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏)) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
19 | 18 | rexlimdv3a 3171 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) → (∃𝑑 ∈ ℚ (𝑎 < 𝑑 ∧ 𝑑 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})) |
20 | 1, 19 | mpd 15 | . 2 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
21 | 20 | 3expa 1112 | 1 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 {crab 3054 class class class wbr 4804 ℝcr 10127 < clt 10266 ℚcq 11981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-q 11982 |
This theorem is referenced by: rpnnen3 38101 |
Copyright terms: Public domain | W3C validator |