![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem5 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15175. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem5 | ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 11937 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1nn 11244 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℕ → 1 ∈ ℕ) |
4 | ssid 3766 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
5 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
6 | 5 | rpnnen2lem2 15164 | . . . . . 6 ⊢ (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ) |
7 | 4, 6 | mp1i 13 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ) |
8 | 7 | ffvelrnda 6524 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) ∈ ℝ) |
9 | 5 | rpnnen2lem2 15164 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
10 | 9 | ffvelrnda 6524 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
11 | 5 | rpnnen2lem3 15165 | . . . . 5 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
12 | seqex 13018 | . . . . . 6 ⊢ seq1( + , (𝐹‘ℕ)) ∈ V | |
13 | ovex 6843 | . . . . . 6 ⊢ (1 / 2) ∈ V | |
14 | 12, 13 | breldm 5485 | . . . . 5 ⊢ (seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ ) |
15 | 11, 14 | mp1i 13 | . . . 4 ⊢ (𝐴 ⊆ ℕ → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ ) |
16 | elnnuz 11938 | . . . . . 6 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
17 | 5 | rpnnen2lem4 15166 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
18 | 4, 17 | mp3an2 1561 | . . . . . 6 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
19 | 16, 18 | sylan2br 494 | . . . . 5 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
20 | 19 | simpld 477 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → 0 ≤ ((𝐹‘𝐴)‘𝑘)) |
21 | 19 | simprd 482 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)) |
22 | 1, 3, 8, 10, 15, 20, 21 | cvgcmp 14768 | . . 3 ⊢ (𝐴 ⊆ ℕ → seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
23 | 22 | adantr 472 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
24 | simpr 479 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) | |
25 | 10 | adantlr 753 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
26 | 25 | recnd 10281 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℂ) |
27 | 1, 24, 26 | iserex 14607 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ↔ seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ )) |
28 | 23, 27 | mpbid 222 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ⊆ wss 3716 ifcif 4231 𝒫 cpw 4303 class class class wbr 4805 ↦ cmpt 4882 dom cdm 5267 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ℝcr 10148 0cc0 10149 1c1 10150 + caddc 10152 ≤ cle 10288 / cdiv 10897 ℕcn 11233 2c2 11283 3c3 11284 ℤ≥cuz 11900 seqcseq 13016 ↑cexp 13075 ⇝ cli 14435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-pm 8029 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-ico 12395 df-fz 12541 df-fzo 12681 df-fl 12808 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-limsup 14422 df-clim 14439 df-rlim 14440 df-sum 14637 |
This theorem is referenced by: rpnnen2lem6 15168 rpnnen2lem7 15169 rpnnen2lem8 15170 rpnnen2lem9 15171 rpnnen2lem12 15174 |
Copyright terms: Public domain | W3C validator |